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Outline

Main	characteristics
-	Standard	DFT
-	Fast	for	large	systems	=>	Order-N
-	From	quick	&	dirty	to	highly	accurate

Methods	and	approximations
-	Norm-conserving	pseudopotentials
-	Basis	of	numerical	atomic	orbitas
-	Uniform	real-space	grid
-	Order-N	functional	(solver)

Introduction	to	basics	only	(main	engine)
(SIESTA	can	do	many	more	things	than	presented	here!)



The	physics	of	low-energy	matter

Made	of	electrons	&	nuclei	
(interacting	with	photons)

	
matter	at	T	up	to	several	millon	K

(except	for	nuclear	fission	and	radioactive	decay)

-	Atomic	&	molecular	physics
-	Condensed	matter	physics	(solids,	liquids)
-	Plasma	physics

Low	energy	in	the	sense	of
not	probing	inner	structure	of	nuclei

Ali Yazdani’s group, Princeton

© Shutterstock, LiveScience



First principles
Quantum	Mechanics

Coulomb’s law

Just	electrons	and	nuclei



Just	electrons	and	nuclei

The	 underlying	 physical	 laws	 necessary	
for	 the	 mathematical	 theory	 of	 .	 .	 .	 the	
whole	 of	 chemistry	 are	 thus	 completely	
known,	and	the	difficulty	 is	only	 that	 the	
exact	 application	 of	 these	 laws	 leads	 to	
equations	 much	 too	 complicated	 to	 be	
soluble.

Paul	Dirac,	1929

=>		Approximations



Born-Oppenheimer approximation

(2)

Þ	Nuclei	are	much	slower	than	
electrons

Decoupling	of	electrons	and	nuclei

(1)

𝑚! ≫ 𝑚"



OVERVIEW

Ground state theory for the electronic problem

Twist on variational principle

E[ ] = min
 

h |Ĥ| i �! min
n

E[n]

Hohenberg-Kohn theorems. No longer exponential complexity!

Map minn E[n] into solving mean-field-like problem

Kohn-Sham formulation. Self-consistent single-particle as in HF
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Many	electrons:		Density-Functional	Theory	(DFT)



Kohn-Sham DFT
Non-interacting	electrons	in	a	self-consistent	effective	potential



Local	density approximation (LDA)
Inhomogeneous gas	

Density n(r) Homogeneous gas	
Constant density n
Þ Energy Vxc(n )	

r

n =	n(r)

Vxc(n(r))

e-

Generalized gradient approximation (GGA):		Vxc(n(r),	Ñn(r)	)

Van	der	Waals	xc	functionals:		Vxc(	n(r),Ñn(r);	n(r’),Ñn(r’)	)	



Expand KS	states in	a	basis



Basis set	– LCAO	– atomic orbitals

Numerical (pseudo)atomic orbitals (PAOs)	
&	real	spherical harmonics
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Atomic	orbitals	as	basis
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Radial	functions

ß	Angular	functions



Linear	Scaling
KEY:	LOCALITY

W.	Yang,	Phys.	Rev.	Lett.	66,	1438	(1992)	

“Divide	and	Conquer”

x	2

Large	system



Finite-support	atomic	orbitals

Strictly	localised	
(zero	beyond	cut-off	radius)

Hard	vs	smooth	confinement



Finite-support	atomic	orbitals	as	basis
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Only	2	conditions

1.

2.		Finite	range

User	decides

• How	many	centres

• Where	to	put	them	(on	atoms	or	not)

• How	many	angular	momenta

• How	many	for	each	angul	momentum

• Each		radial	shape



Finite-support	atomic	orbitals	as	basis
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Two steps and	SCF	cycle
Atomic	positions

S

DMin

H
1.	Build

DMout

2.	Solve

Iterate

Results



1.	Building:	Computing	H	(and	S)
H	=	T	+	Vion(r)	+	Vnl+	VH(r)	+	Vxc(r)

Long range

dVH(r)	=	VH[rSCF(r)]	-	VH[ro(r)]

Vna(r)	=	Vion(r)	+	VH[ro(r)]       Neutral-atom potential

H	=	T	+	Vnl	+	Vna(r)	+	dVH	(r)		+	Vxc(r)
Two-center

integrals
Grid integrals



1.	Building (a)
Two-center	integrals
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Convolution theorem

In	addition	to	overlap:	
T	=	-(1/2)	Ñ2	

Vnl =	åa |ca>	ea <ca|		Kleinman-Bylander
(From VPS =	Vion(r)	+	Vnl,)



1.	Building (b):	on a	real-space grid
(discretise space)	
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Poisson equation
Ñ2VH(r)	=	- 4p r(r)

r(r) = åG rG eiGr Þ VH(r)	=	åG	VG eiGr

VG =	- 4p rG /	G2

r(r)	® rG® VG® VH(r)	
FFT FFT

• SIESTA	(normally)	uses	periodic boundary conditions
• Net	charge compensated by uniform background
• Spurious interactions between ‘images’



GGA
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Grid	fineness: ‘mesh cutoff’

Dx Þ kc=p/Dx Þ Ecut=h2kc2/2me



Egg-box	effect

Higher effects on forces than on energy

Grid-cell sampling

E
x

Grid points

Orbital/atom



Grid	fineness	convergence

!"#$ !"#$% ∆= π



2.	Solving:	Linear	scaling

R c

Localised	solutions



k-point sampling
(fineness of	grid in	k-space)

First	Brillouin	Zone

Regular	k-grid

Inequivalent	
points

Monkhorst-Pack

Dk Þ Lc=p/Dk

Lc=	‘length cutoff’



Selfconsistency convergence
SCF	cycle:	𝛒(r)	→	V(r)	→ 𝛒(r)

Energy

E1

E2 E1

E2

Can	be	unstable
e..g.

Charge sloshing

EF

𝛒(r)

Moderated by electronic temperature



Pulay mixing

𝜌! r → 𝜌#$% r

𝛿𝜌! r = 𝜌#$% r - 𝜌! r

𝜌!&' r = )
()!*+

!

𝑐(𝜌( r

𝛿𝜌!&' r = )
()!*+

!

𝑐(𝛿𝜌( r = 𝑚𝑖𝑛



The	physics	of	low-energy	matter
Behind	properties	and	processes	in

-	Chemistry	
-	Biomedicine	(biochem,	biophys,	molecular	bio)
-	Geo	(geophyiscs,	geochemistry)
-	Lots	of	astrophysics	(planets,	exoplanets)
-	Engineering	(materials,	electronics	…)
-	Energy	research
-	Nanoscience	and	technlogy

Earth’s inerior © ASX CAnada

Exoplanets © NASAJPL Caltech, FINESSE Project

Liquid water © MV Fernandez-Serra

Pain receptors in the brain © Univ Bochum © Getty Images



Thank	you



‘Molecular’	vs	‘solid’	pressure

solid

molecule

Tij=+dE/d𝜺ij

P=-dE/dV

Unit cell



Internal supercell

Unit cell

Supercell



Finite-range basis orbitals – Multiple zeta	
•First z:  DePAO Þ Rc
•Second z:  Split-valence Þ Split-norm

O.	F.	Sankey and	D.	J.	Niklewski,	Phys.	Rv.	B 40,	3979	(1989)

E.	Artacho	et	al,	Phys.	Stat.	Sol	(b) 215,	809	(1999)



Polarization orbitals

3d orbitals of	Si

p PAO	perturbed by electric field d PAO



NaCl.ORB_INDX file



Basis set	convergence

Atom Solid	

SZ 7.3 7.9

DZ 8.4 8.5

TZ 8.5 8.7

SZP 8.6 12.5

DZP 11.9 16.0

TZP 12.5 16.8

TZDP 13.1 17.8

Equivalent PW	cutoffs (Ry)

for basis optimized in

J.	Junquera	et	al.	Phys.	Rev.	B,	64,	235111	(2001)


