

Basics and some details of the SIESTA method

Emilio Artacho

Nanogune, Ikerbasque & DIPC, San Sebastian, Spain

Theory of Condensed Matter, Department of Physics Cavendish Laboratory, University of Cambridge

Outline

siesta

Main characteristics

- Standard DFT
- Fast for large systems => Order-N
- From quick & dirty to highly accurate

Methods and approximations

- Norm-conserving pseudopotentials
- Basis of numerical atomic orbitas
- Uniform real-space grid
- Order-N functional (solver)

Introduction to basics only (main engine)

(SIESTA can do many more things than presented here!)

The physics of low-energy matter

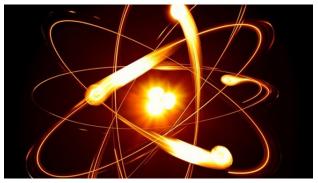
Made of electrons & nuclei (interacting with photons)

matter at T up to several millon K

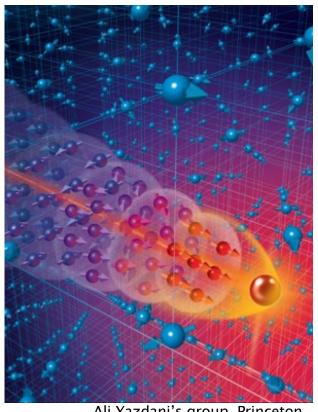
(except for nuclear fission and radioactive decay)

- Atomic & molecular physics
- Condensed matter physics (solids, liquids)
- Plasma physics

Low energy in the sense of not probing inner structure of nuclei



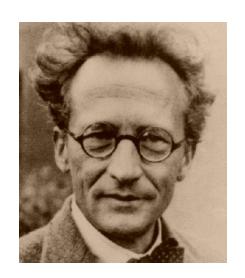
© Shutterstock, LiveScience



Ali Yazdani's group, Princeton

First principles

Quantum Mechanics



$$H\Psi(s_1, s_2 \dots s_N, t) = i\hbar \,\partial_t \Psi(s_1, s_2 \dots s_N, t)$$
$$s_i = (\mathbf{r}_i, \sigma_i)$$

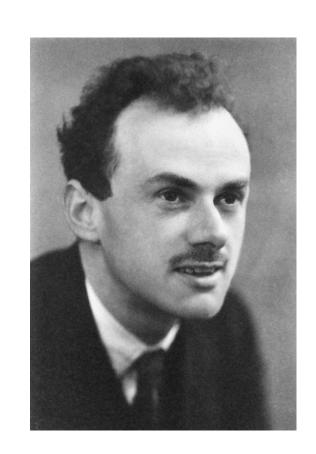
Coulomb's law

$$H = -\sum_{i}^{N} \frac{\hbar^{2}}{2m_{i}} \nabla_{i}^{2} + \sum_{i,j < i}^{N} \frac{q_{i}q_{j}}{r_{ij}}$$

Just electrons and nuclei

Just electrons and nuclei

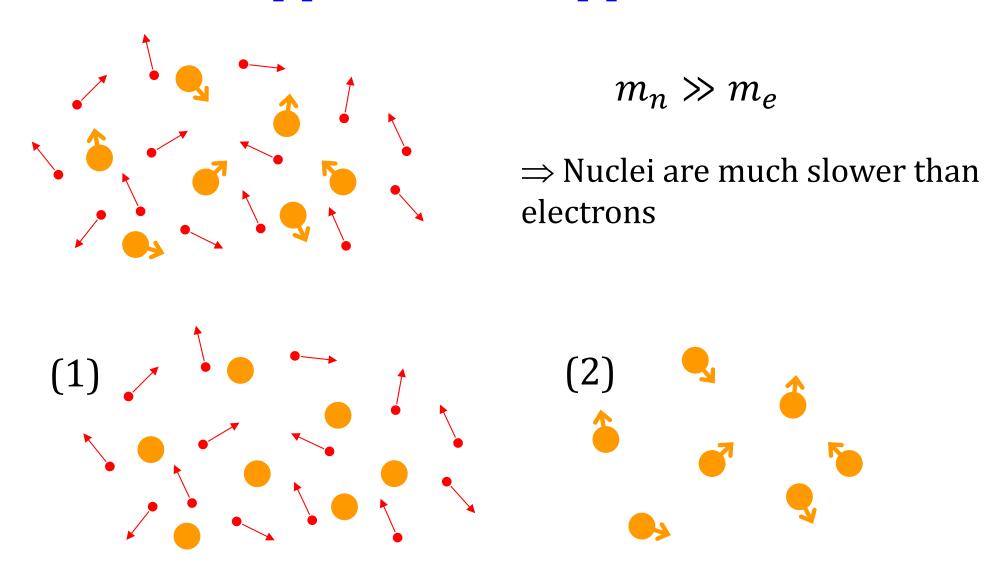
The underlying physical laws necessary for the mathematical theory of . . . the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble.



Paul Dirac, 1929

=> Approximations

Born-Oppenheimer approximation



Decoupling of electrons and nuclei

Many electrons: Density-Functional Theory (DFT)

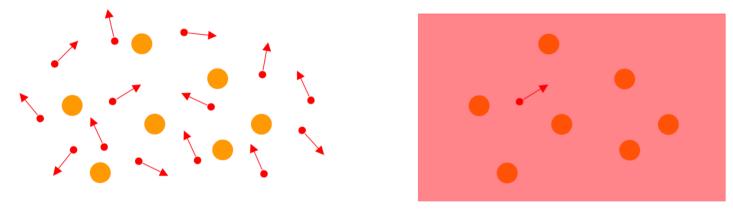
Ground state theory for the electronic problem

Twist on variational principle

$$E[\Psi] = \min_{\Psi} \langle \Psi | \hat{H} | \Psi \rangle \longrightarrow \min_{n} E[n]$$

Hohenberg-Kohn theorems. No longer exponential complexity!

• Map $\min_n E[n]$ into solving mean-field-like problem



Kohn-Sham formulation. Self-consistent single-particle as in HF

Kohn-Sham DFT

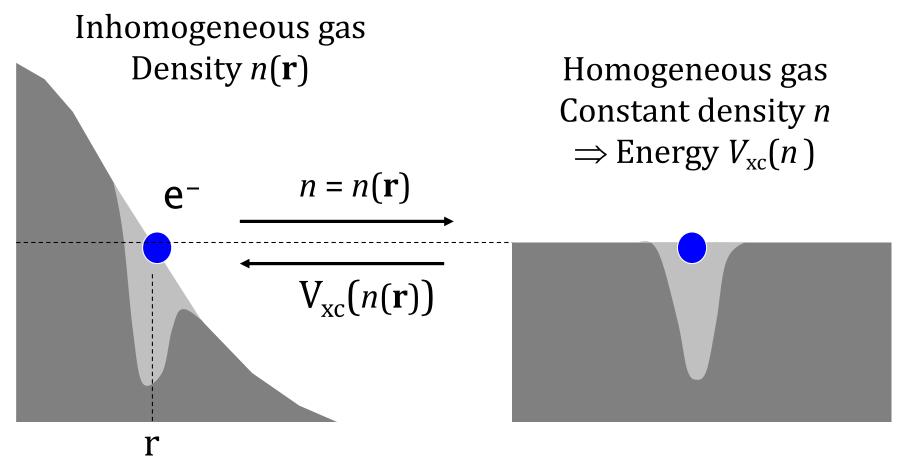
Non-interacting electrons in a self-consistent effective potential

$$h^{KS} = -\frac{1}{2}\nabla^2 + V_{\text{ext}}(\mathbf{r}) + \Phi(\mathbf{r}) + V_{\text{xc}}(\mathbf{r})$$

$$\Phi(\mathbf{r}) = \int d^3 \mathbf{r}' \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \quad V_{XC}(\mathbf{r}) = \frac{\delta E[n(\mathbf{r})]}{\delta n(\mathbf{r})}$$

$$h^{\text{KS}}\psi_n(\mathbf{r}) = \epsilon_n \psi_n(\mathbf{r})$$
 $n(\mathbf{r}) = \sum_n |\psi_n(\mathbf{r})|^2$

Local density approximation (LDA)



Generalized gradient approximation (GGA): $V_{xc}(n(\mathbf{r}), \nabla n(\mathbf{r}))$

Van der Waals xc functionals: $V_{xc}(n(\mathbf{r}), \nabla n(\mathbf{r}); n(\mathbf{r}'), \nabla n(\mathbf{r}'))$

Expand KS states in a basis

Basis set:
$$\{|e_{\mu}\rangle,\;\mu=1\ldots\mathcal{N}\}$$
 $\phi_{\mu}(\mathbf{r})=\langle\mathbf{r}|e_{\mu}\rangle$

Schrödinger (Kohn-Sham) eq. $H|\psi_n\rangle=E_n|\psi_n\rangle$ becomes

$$\sum_{\nu} H_{\mu\nu} C_{\nu n} = E_n \sum_{\nu} S_{\mu\nu} C_{\nu n}$$

where

$$|\psi_n\rangle = \sum_{\mu} |e_{\mu}\rangle C_{\mu n}$$
, $H_{\mu\nu} = \langle e_{\mu}|H|e_{\nu}\rangle$, and $S_{\mu\nu} = \langle e_{\mu}|e_{\nu}\rangle$,

$$n(\mathbf{r}) = \sum_{n}^{\text{occ}} |\psi_n(\mathbf{r})|^2 = \sum_{n}^{\text{occ}} \psi_n(\mathbf{r}) \psi_n^*(\mathbf{r}) = \sum_{n}^{\text{occ}} \sum_{\mu,\nu} C_{\mu n} \phi_{\mu}(\mathbf{r}) C_{\nu n}^* \phi_{\nu}^*(\mathbf{r})$$
$$= \sum_{\mu,\nu} \rho_{\mu\nu} \phi_{\mu}(\mathbf{r}) \phi_{\nu}^*(\mathbf{r}) \quad \text{where} \quad \rho_{\mu\nu} \equiv \sum_{n}^{\text{occ}} C_{\mu n} C_{\nu n}^*$$

Basis set – LCAO – atomic orbitals

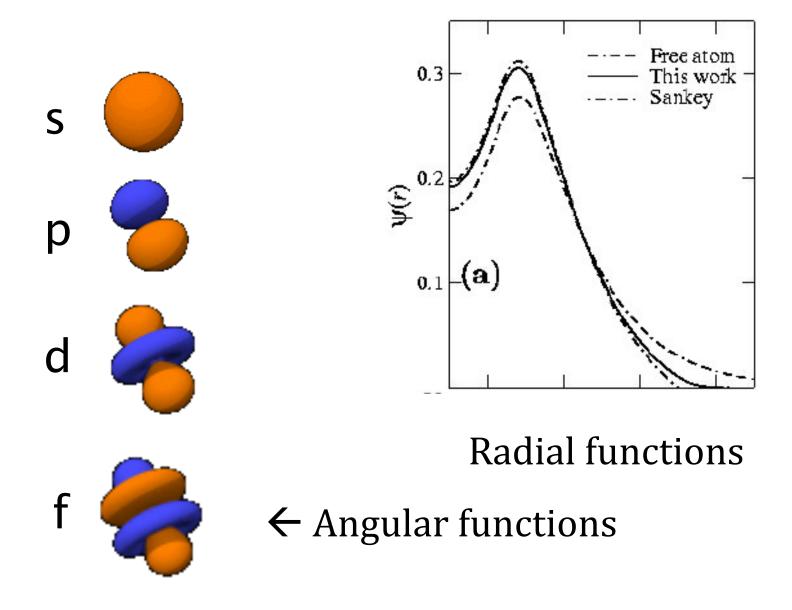
Numerical (pseudo)atomic orbitals (PAOs) & real spherical harmonics

$$\phi_{\zeta lm}(r,\theta,\varphi) = R_{\zeta}(r)Y_{lm}(\theta,\varphi)$$

$$Y_{lm}(\theta, \varphi) = C_{lm} P_l^m(\cos \theta) \times \begin{cases} \sin(m\varphi) & \text{if } m < 0 \\ \cos(m\varphi) & \text{if } m \ge 0 \end{cases}$$

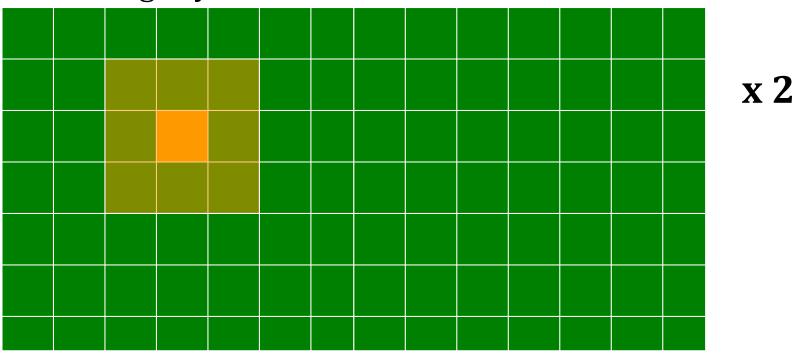
$$l=1, m=-1,0,+1 \Rightarrow p_y, p_z, p_x$$

Atomic orbitals as basis



Linear Scaling KEY: LOCALITY

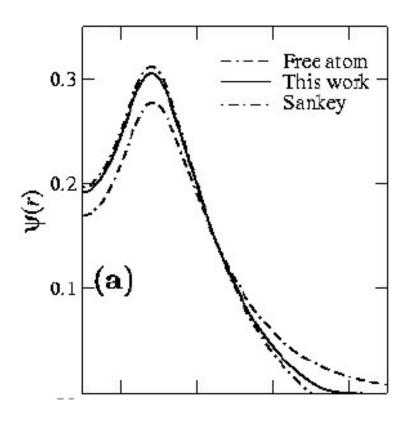
Large system



"Divide and Conquer"

W. Yang, Phys. Rev. Lett. 66, 1438 (1992)

Finite-support atomic orbitals



Strictly localised

(zero beyond cut-off radius)

Hard vs smooth confinement

Finite-support atomic orbitals as basis

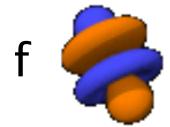
Only 2 conditions

1.
$$\phi_{\zeta lm}(r,\theta,\varphi) = R_{\zeta}(r)Y_{lm}(\theta,\varphi)$$

2. Finite range

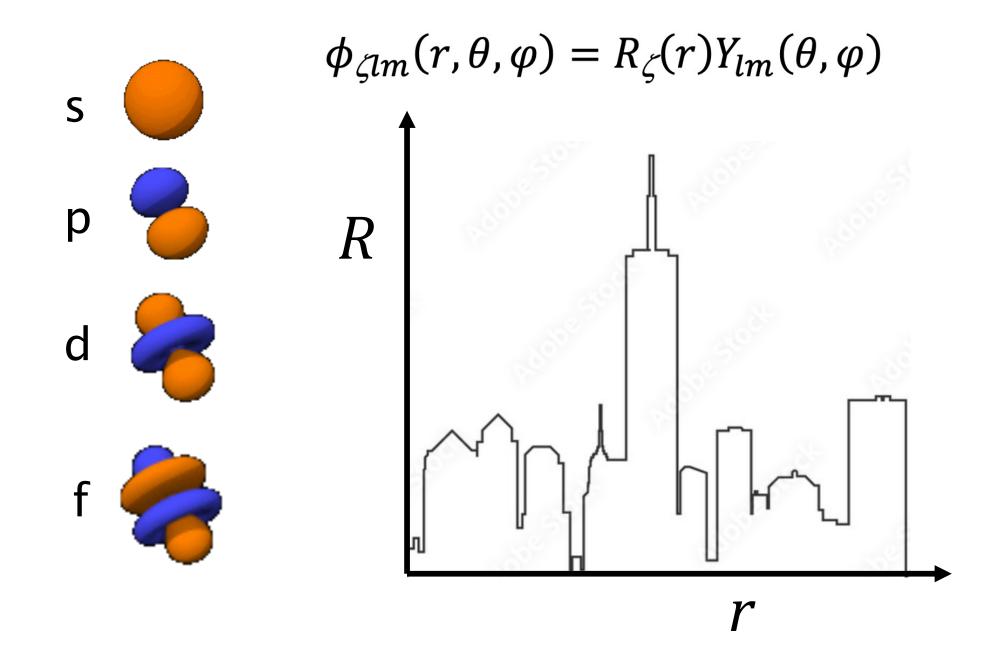
User decides

- How many centres
- Where to put them (on atoms or not)

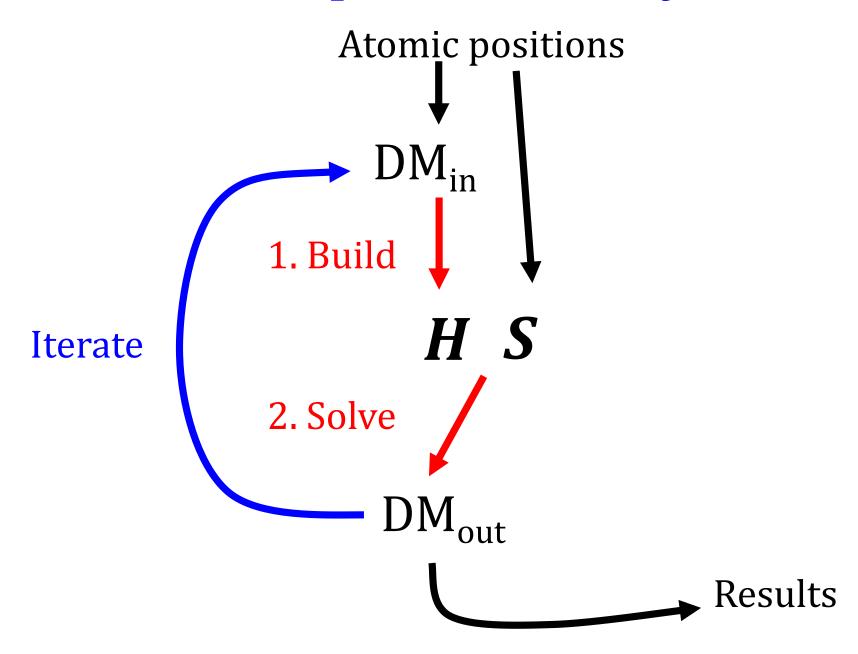


- How many angular momenta
- How many for each angul momentum
- Each radial shape

Finite-support atomic orbitals as basis



Two steps and SCF cycle



1. Building: Computing H (and S)

$$H = T + V_{\text{ion}}(\mathbf{r}) + V_{\text{nl}} + V_{\text{H}}(\mathbf{r}) + V_{\text{xc}}(\mathbf{r})$$
Long range

$$V_{\text{na}}(r) = V_{\text{ion}}(r) + V_{\text{H}}[\rho_{\text{o}}(r)]$$
 Neutral-atom potential

$$\delta V_{\rm H}(\mathbf{r}) = V_{\rm H}[\rho_{\rm SCF}(\mathbf{r})] - V_{\rm H}[\rho_{\rm o}(\mathbf{r})]$$

$$H = T + V_{nl} + V_{na}(\mathbf{r}) + \delta V_{H}(\mathbf{r}) + V_{xc}(\mathbf{r})$$
Two-center
Grid integrals
integrals

1. Building (a) Two-center integrals

Convolution theorem

$$S(\mathbf{R}) \equiv \langle \phi_1 | \phi_2 \rangle = \int \phi_1(\mathbf{r}) \, \phi_2(\mathbf{r} - \mathbf{R}) \, d\mathbf{r}$$

$$\phi(\mathbf{k}) = \frac{1}{(2\pi)^{2/3}} \int \phi(\mathbf{r}) e^{-i\mathbf{k}\mathbf{r}} d\mathbf{r}$$

$$S(\mathbf{R}) = \int \phi_1(\mathbf{k}) \, \phi_2(\mathbf{k}) \, e^{i\mathbf{k}\mathbf{R}} d\mathbf{k}$$

In addition to overlap:

$$T = -(1/2) \nabla^2$$

$$V_{\rm nl} = \sum_{\alpha} |\chi_{\alpha}\rangle \varepsilon_{\alpha} < \chi_{\alpha}|$$
 Kleinman-Bylander

(From
$$V_{PS} = V_{ion}(r) + V_{nl}$$
)

1. Building (b): on a real-space grid

(discretise space)

$$\psi_{\rm i}(r) = \sum_{\mu} c_{i\mu} \phi_{\mu}(r)$$

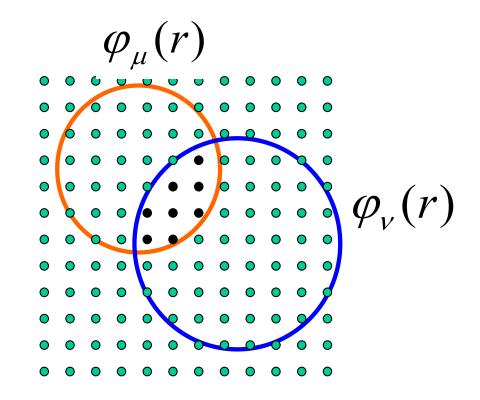
$$\rho_{\mu\nu} = \sum_{i} c_{i\mu}^{} c_{i\nu}^{}$$

$$\rho(r) = \sum_i \psi_i^2(r) = \sum_{\mu\nu} \rho_{\mu\nu} \phi_\mu(r) \phi_\nu(r)$$

$$\delta \rho(r) = \rho_{SCF}(r) - \rho_{atoms}(r)$$

$$\rho(r) \rightarrow V_{xc}(r)$$

$$\delta \rho(r) \xrightarrow{\text{FFT}} \delta V_{\text{H}}(r)$$



Poisson equation

$$\begin{split} \nabla^2 V_H(r) &= -4\pi \; \rho(r) \\ \rho(r) &= \sum_G \rho_G \; e^{iGr} \; \implies \; V_H(r) = \sum_G V_G \; e^{iGr} \\ V_G &= -4\pi \; \rho_G \, / \; G^2 \end{split}$$

$$\rho(r) \xrightarrow{\text{FFT}} \rho_G \rightarrow V_G \xrightarrow{\text{FFT}} V_H(r)$$

- SIESTA (normally) uses periodic boundary conditions
- Net charge compensated by uniform background
- Spurious interactions between 'images'

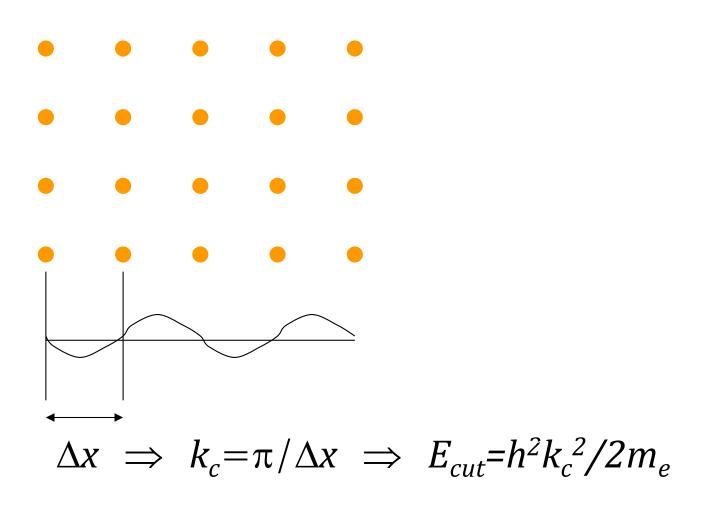
GGA

$$v_{xc}(r) = \frac{\delta E_{GGA}[\rho(r'), |\nabla \rho(r')|]}{\delta \rho(r)}$$
$$= V_{GGA}(\rho(r), |\nabla \rho(r)|, \nabla^2 \rho(r), \nabla \rho(r) \bullet \nabla |\nabla \rho(r)|)$$

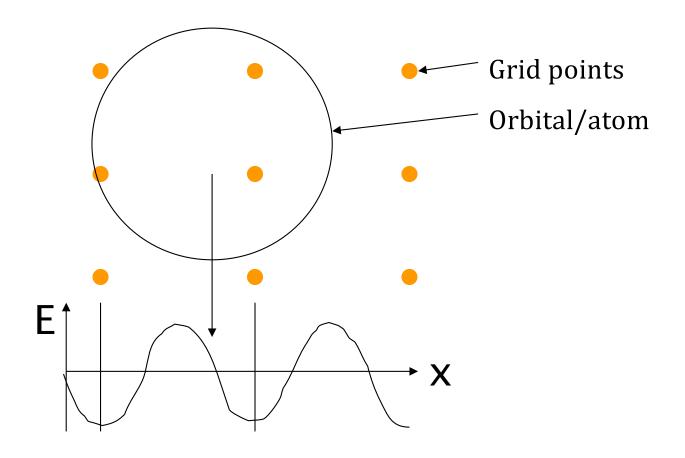
$$\frac{\partial \rho}{\partial x} \equiv \frac{\rho_{i+1} - \rho_{i-1}}{x_{i+1} - x_{i-1}} \implies E_{xc} \equiv E_{GGA}(\rho_1, \rho_2, ...)$$

$$\Rightarrow v_{xc}(r_i) \equiv \frac{\partial E_{xc}}{\partial \rho_i}$$

Grid fineness: 'mesh cutoff'



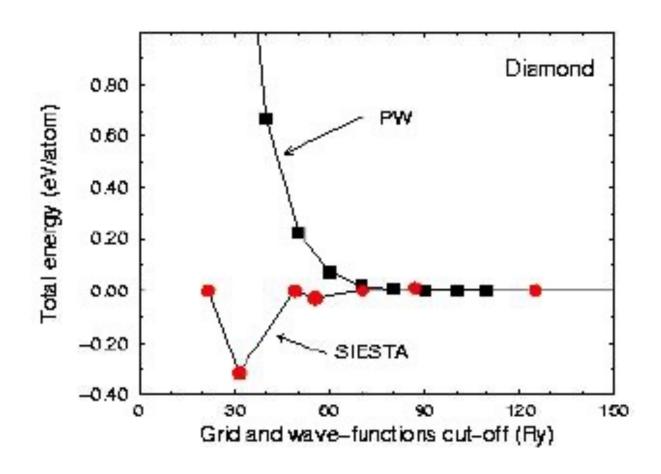
Egg-box effect



Higher effects on forces than on energy

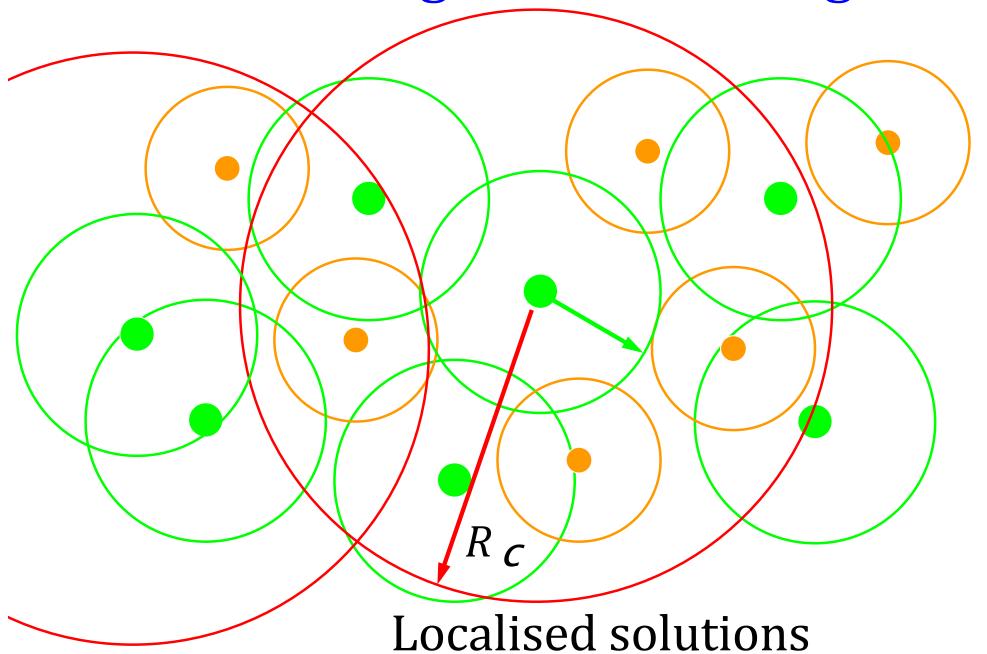
Grid-cell sampling

Grid fineness convergence



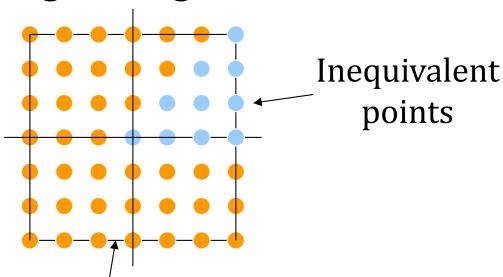
$$E_{cut} = (\pi / \Delta x)^2$$

2. Solving: Linear scaling



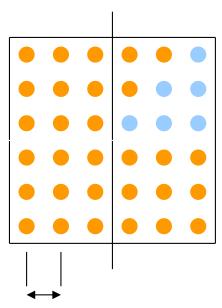
k-point sampling

(fineness of grid in *k*-space)



First Brillouin Zone

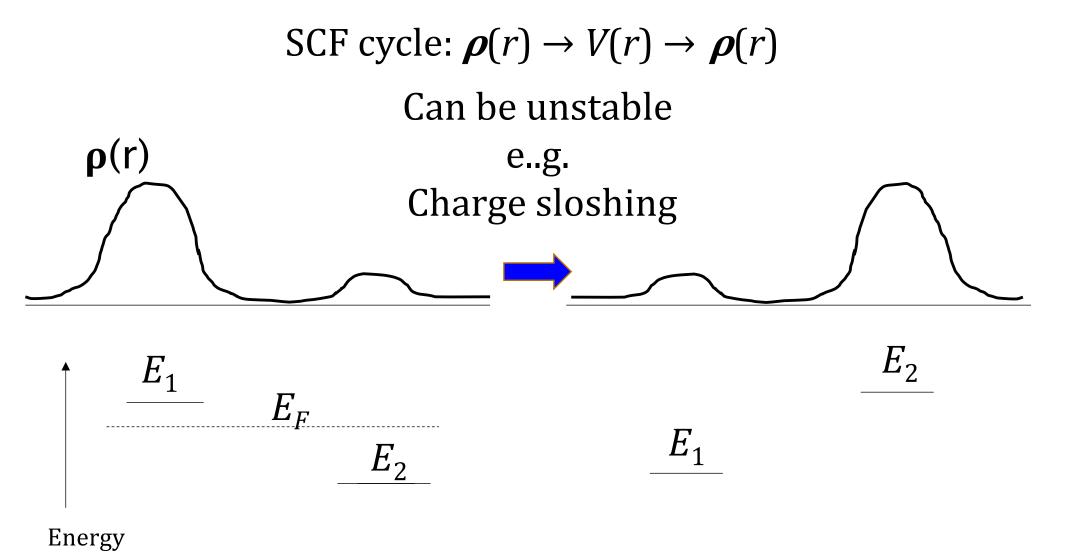
Monkhorst-Pack



$$\Delta k \Rightarrow L_c = \pi/\Delta k$$

$$L_c$$
 = 'length cutoff'

Selfconsistency convergence



Moderated by electronic temperature

Pulay mixing

$$\rho_n(\mathbf{r}) \to \rho_{out}(\mathbf{r})$$

$$\delta \rho_n(\mathbf{r}) = \rho_{out}(\mathbf{r}) - \rho_n(\mathbf{r})$$

$$\rho_{n+1}(\mathbf{r}) = \sum_{k=n-m}^{n} c_k \rho_k(\mathbf{r})$$

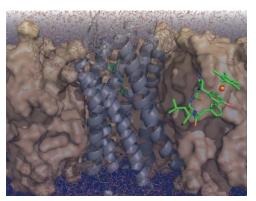
$$\delta \rho_{n+1}(\mathbf{r}) = \sum_{k=n-m}^{n} c_k \delta \rho_k(\mathbf{r}) = min$$

The physics of low-energy matter

Behind properties and processes in

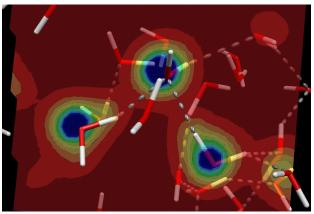
- Chemistry
- Biomedicine (biochem, biophys, molecular bio)
- Geo (geophyiscs, geochemistry)
- Lots of astrophysics (planets, exoplanets)
- Engineering (materials, electronics ...)
- Energy research
- Nanoscience and technlogy

Exoplanets © NASAJPL Caltech, FINESSE Project



Pain receptors in the brain © Univ Bochum

Earth's inerior © ASX CAnada

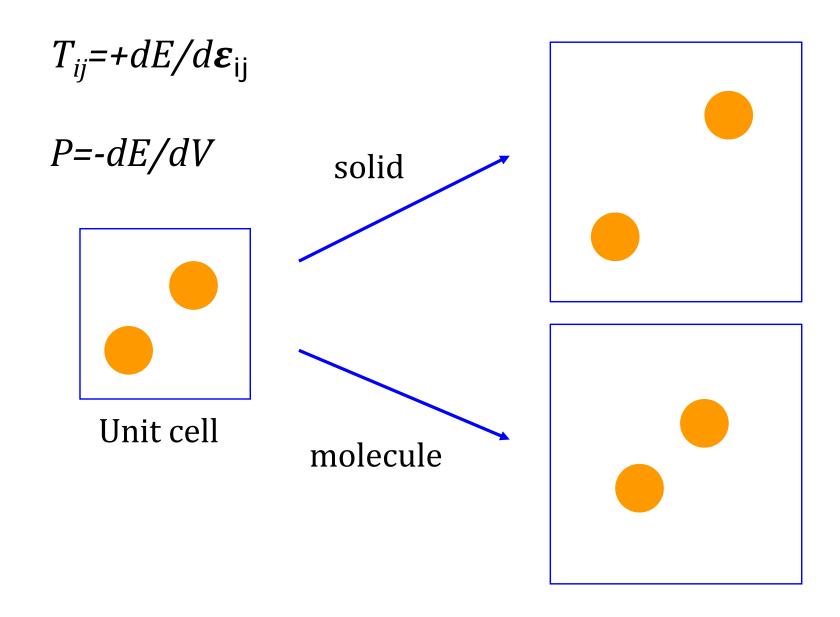


Liquid water © MV Fernandez-Serra

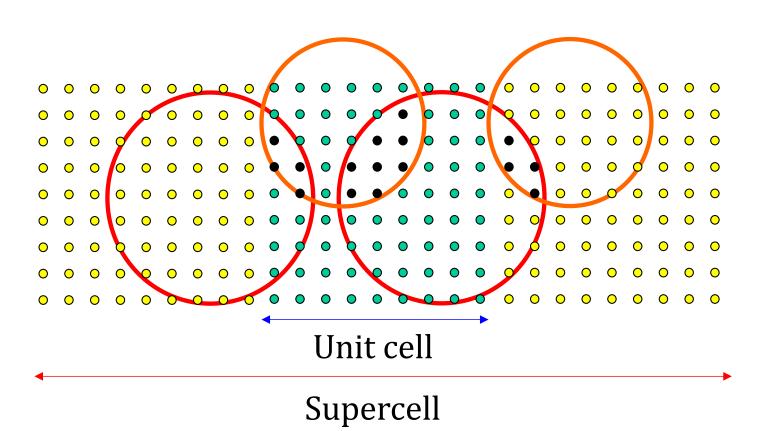
© Getty Images

Thank you

'Molecular' vs 'solid' pressure

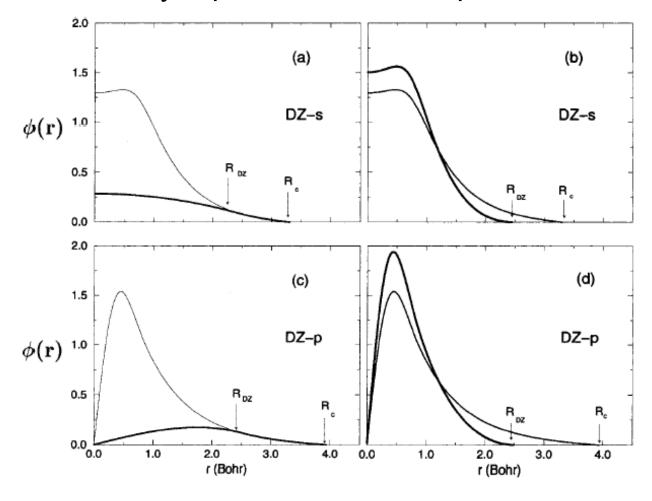


Internal supercell



Finite-range basis orbitals – Multiple zeta

- First ζ : $\Delta \varepsilon_{PAO} \Rightarrow R_c$
- •Second ζ : Split-valence \Rightarrow Split-norm

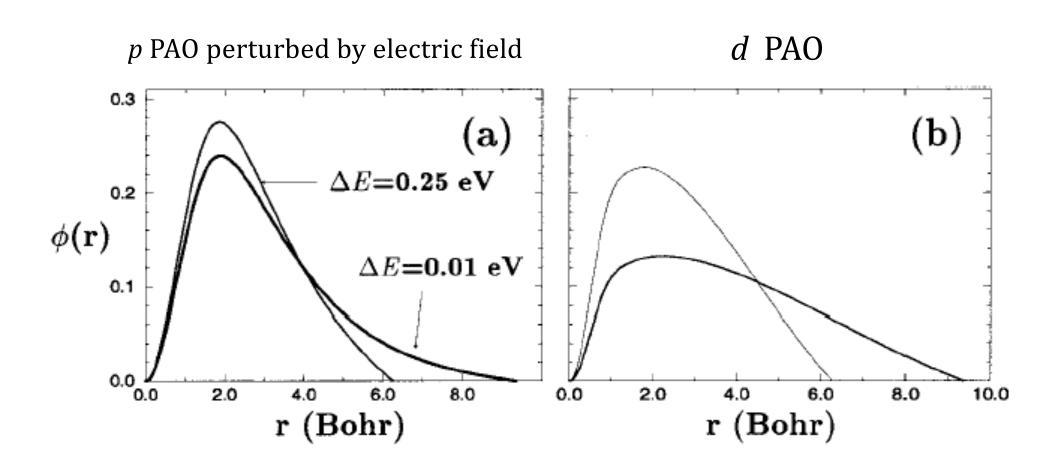


O. F. Sankey and D. J. Niklewski, *Phys. Rv. B* 40, 3979 (1989)

E. Artacho et al, *Phys. Stat. Sol (b)* **215**, 809 (1999)

Polarization orbitals

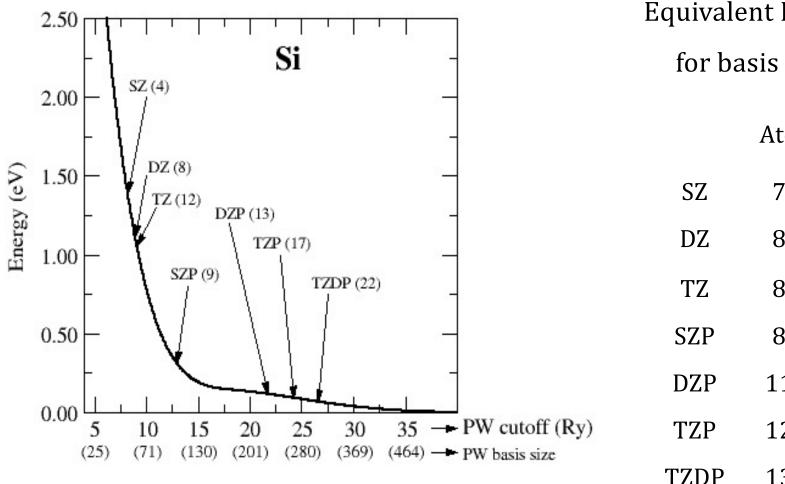
3d orbitals of Si



NaCl.ORB_INDX file

```
18
             18 = orbitals in unit cell and supercell. See end of file.
          ia is
                  spec iao n
                                                                  isc
                                                                          iuo
                                                            rc
                                                   sym
          1 1
                                                                   0
                    Na
                                                     s 11.046
                                                                0
                                                                            1
          1
             1
                                                         8.821
                                                                   0
                                                   Ppy 11.046
                    Na
                                                   Ppz 11.046
             1
                                                                   0
                    Na
             1
                    Na
                                                   Ppx 11.046
                                                                0
                                                                   0
                    Cl
                                                         4.912
                    Cl
                                                         3.212
                   Cl
                                                         6.152
                   Cl
                                                                            9
                                                         6.152
                                                    pΖ
                   Cl
    10
             2
                                                         6.152
                                                                0
                                                                           10
    11
                    сı
                                                         3.594
                                                                           11
    12
                                                                           12
                                                    pΖ
                                                         3.594
    13
                                                         3.594
                                                                0
                                                                           13
                                                    рx
    14
                                                         6.152
                                                                           14
                                                  Pdxy
    15
                   Cl 10 3 2 -1 1 T
                                                         6.152
                                                                0
                                                                   0 0
                                                                           15
                                                  Pdyz
                   Cl 11 3 2 0 1 T
    16
                                                  Pdz2
                                                         6.152
                                                                           16
                    Cl 12 3 2 1 1 T
                                                         6.152
                                                                           17
    17
                                                  Pdxz
                                                                0 0 0
           2 2
                    Cl 13 3 2 2 1 T
                                                         6.152 0 0 0
    18
                                               Pdx2-y2
                                                                           18
Column codes:
  io = Orbital index in supercell
  ia = Atom to which orbital belongs
  is = Atomic species index
spec = Atomic species label
 iao = Orbital index within atom
   n = Principal quantum number
  l = Angular mumentum quantum number
  m = Magnetic quantum number of (real) orbital:
       m<0 \Rightarrow sin(m*phi), m>=0 \Rightarrow cos(m*phi)
   z = Zeta index of orbital
   p = Is this a polarization orbital? (False|True)
 sym = Symmetry name of real orbital
  rc = Cutoff radius of orbital (Bohr)
 isc = Unit cell indexes to which orbital belongs:
       center(io) = center(iuo) + sum_(i=1:3) cell_vec(i) * isc(i)
 iuo = Equivalent orbital in first unit cell
```

Basis set convergence



Equivalent PW cutoffs (Ry) for basis optimized in

	Atom	Solid
SZ	7.3	7.9
DZ	8.4	8.5
TZ	8.5	8.7
SZP	8.6	12.5
DZP	11.9	16.0
TZP	12.5	16.8
TZDP	13.1	17.8

J. Junquera et al. Phys. Rev. B, 64, 235111 (2001)