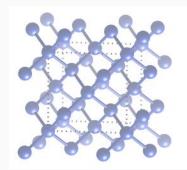


Converge calculations: Mesh, k-points and SCF convergence

Dr. Julio Gutiérrez Moreno Barcelona Supercomputing Center 19th November 2025

Convergence in DFT


• Systematically reducing numerical errors (by increasing computational sampling) until they become "acceptable".

Convergence is a critical step in computer simulations.
 Without proper convergence, results could lead to incorrect conclusions.
 Convergence is essential for publishing accurate and reproducible data.

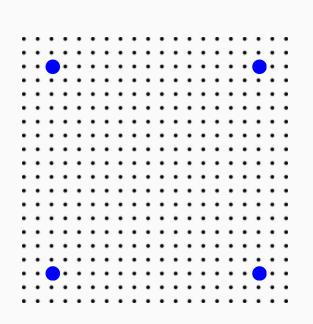
The Real Space Grid in SIESTA

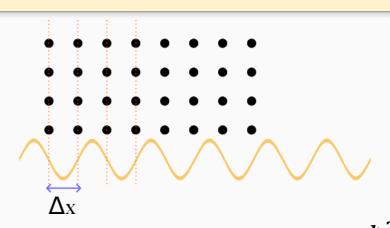
Real space

- Potentials
- Densities
- Basis

Real-space mesh for localized orbitals. The mesh density must be high enough to accurately represent the electronic density and potentials.

Reciprocal space


- Density of states
- Band Structure



Reciprocal-space grid for sampling the Brillouin Zone of the periodic structure.

Both grids need independent convergence tests.

The Real Space grid: mesh cutoff

$$\Delta x \to k_c = \frac{\pi}{\Delta x} \to E_c = \frac{\hbar^2 k_c^2}{2m_e}$$

Fineness ↔ Maximum energy avoiding aliasing

$$\Delta x \leftrightarrow E_{Cutoff}$$

MeshCutoff

Energy units (Ry)

Real space grid: MeshCutoff

What is it set by the user?

Mesh.Cutoff 300 Ry (default)

Mesh.Cutoff 100 Ry

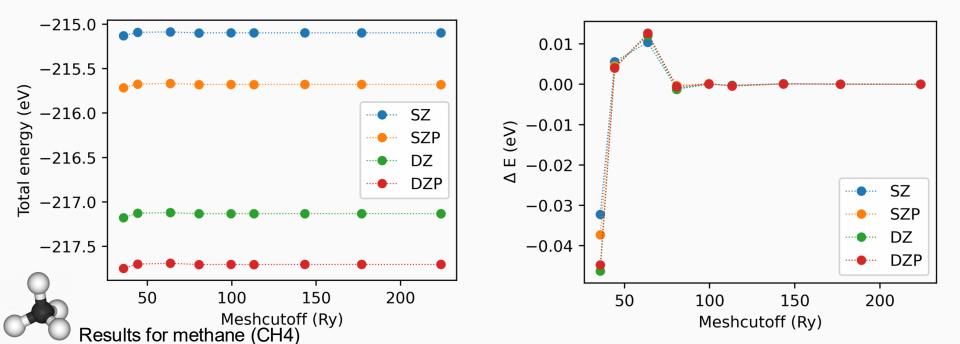
What is set by siesta?

$$MESH = 18 \times 18 \times 30 = 9720$$

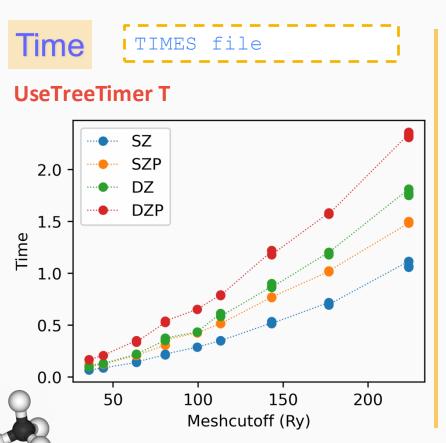
Mesh cutoff (required, used) = 100.000 101.039 Ry

How can one decide the good value?

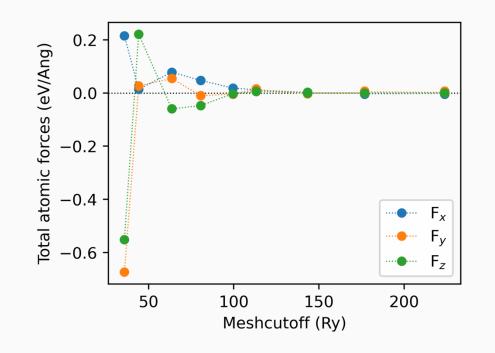
Minimize the total energy.


Total (equilibrium) force to zero.

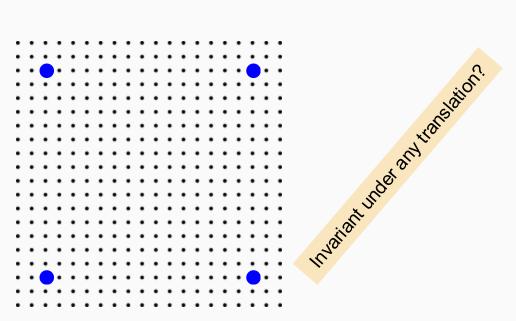
Reasonable time (relatively small systems)

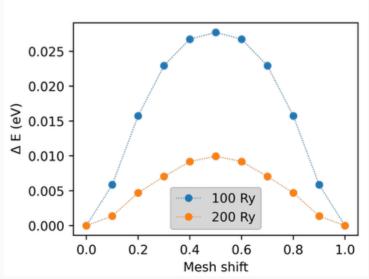

Real space grid: MeshCutoff

Energy

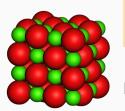

siesta: Final energy (eV):

Real space grid: MeshCutoff





Results for methane (CH4)


The Real Space grid: egg-box effect

%block AtomicCoordinatesOrigin
0.0 0.0 0.0
%endblock AtomicCoordinatesOrigin

$$\delta z_{shift} = \left(\frac{1}{M_z}\right) \frac{1}{10}$$

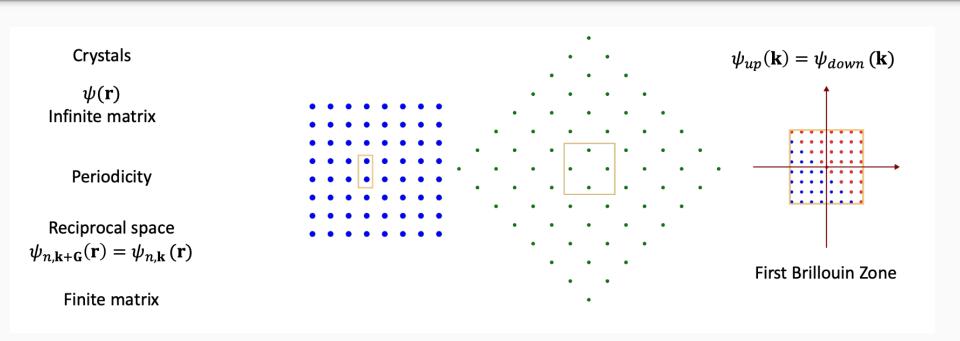
Solution:

- Increase Meshcutoff
- Use "grid-cell-sampling"

MgO

Real space grid: Summary & friendly some recommendations

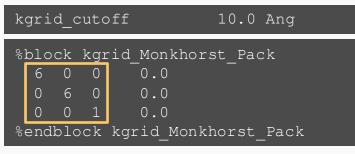
Mesh cutoff controls fineness of real-space grid: **must be tested for each system** Increasing cutoff & monitor E_{total} (and forces) to identify the converged values Balanced **accuracy vs performance**: higher cutoff helps reducing numerical errors but increase computational cost


The egg-box effect occurs when the total energy oscillates due to the finite grid Increase the mesh cutoff in steps

Guidelines & Best Practices (please take them carefully)

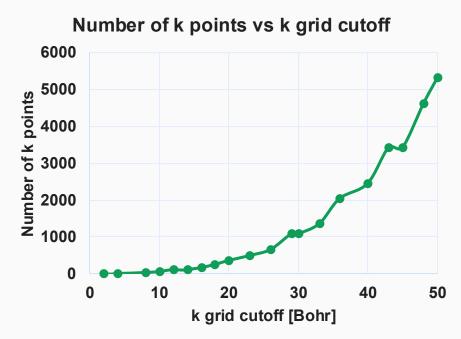
- Molecules: 100–150 Ry often sufficient
- Bulk solids: 150–250 Ry typical
- Heavy atoms, sharp densities: may require 300+ Ry
- For supercells: choose cutoffs that give grid sizes divisible by replication factors
- Converge energies (< 1 meV/atom) and forces (< 0.01 eV/Å)
- Only relax atoms (and move to more complex calculations) after cutoff is chosen

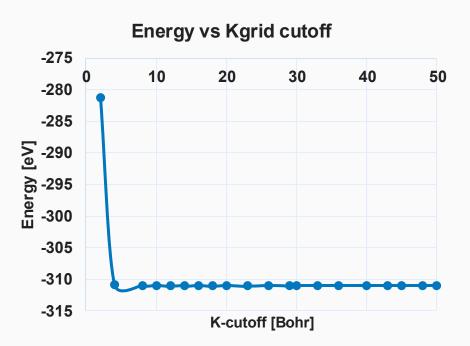
Reciprocal Space


Reciprocal Space

K-points are points in reciprocal space that represent electronic states in a periodic crystal. They are essential for accurate electronic structure calculations.

Reciprocal Space Grid: k-mesh

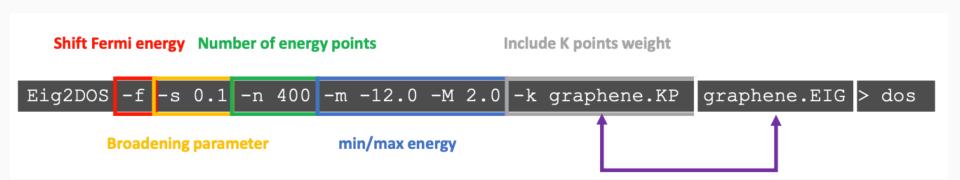

- What is it set by the user?
 - kgrid_cutoff
 - Monkhorst Pack grid
- What is set by siesta?
 - SystemLabel.KP
- How can one decide the good value?
 - Must consider the ratio between the lattice vectors.
 - Check:
 - DOS
 - Bandstructure
 - For metallic systems more k points will be needed.




```
SystemLabel.Kl
```

```
22
1 -0.447497E+00 -0.258363E+00 0.00000E+00 0.555556E-01
2 -0.223749E+00 -0.129181E+00 0.00000E+00 0.277778E-01
3 0.00000E+00 0.000000E+00 0.00000E+00 0.277778E-01
4 0.671246E+00 0.387544E+00 0.00000E+00 0.277778E-01
5 -0.447497E+00 0.111022E-15 0.00000E+00 0.555556E-01
6 -0.223749E+00 0.129181E+00 0.00000E+00 0.555556E-01
7 0.00000E+00 0.258363E+00 0.00000E+00 0.555556E-01
8 0.223749E+00 0.387544E+00 0.00000E+00 0.555556E-01
9 0.447497E+00 0.516726E+00 0.00000E+00 0.555556E-01
10 0.671246E+00 0.645907E+00 0.00000E+00 0.555556E-01
11 -0.447497E+00 0.258363E+00 0.000000E+00 0.555556E-01
12 -0.223749E+00 0.387544E+00 0.00000E+00 0.555556E-01
13 0.00000E+00 0.516726E+00 0.000000E+00 0.555556E-01
14 0.223749E+00 0.387544E+00 0.000000E+00 0.555556E-01
15 0.447497E+00 0.258363E+00 0.000000E+00 0.555556E-01
16 0.671246E+00 0.0645907E+00 0.000000E+00 0.555556E-01
17 -0.423749E+00 0.516726E+00 0.000000E+00 0.555556E-01
18 0.223749E+00 0.645907E+00 0.000000E+00 0.555556E-01
16 0.671246E+00 0.904270E+00 0.000000E+00 0.555556E-01
17 -0.447497E+00 0.775088E+00 0.000000E+00 0.555556E-01
18 -0.223749E+00 0.645907E+00 0.000000E+00 0.577778E-01
18 -0.223749E+00 0.775088E+00 0.000000E+00 0.277778E-01
19 0.00000E+00 0.775088E+00 0.000000E+00 0.277778E-01
20 0.223749E+00 0.904270E+00 0.000000E+00 0.277778E-01
21 0.447497E+00 0.79548E+01 0.000000E+00 0.277778E-01
22 0.671246E+00 0.904270E+01 0.000000E+00 0.277778E-01
22 0.671246E+00 0.103345E+01 0.000000E+00 0.277778E-01
```

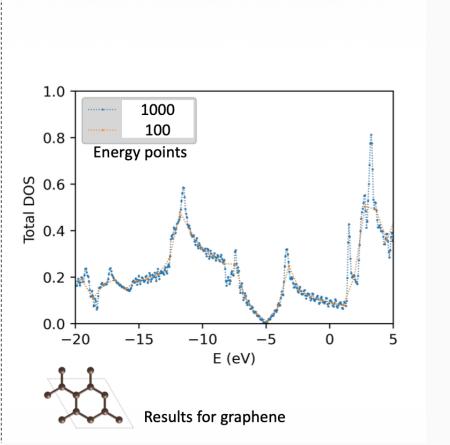
Reciprocal Space Grid: k sampling


Results for diamond

How do I plot PDOS & Band Structures

A look at the SIESTA suite:

cdf2dm	dmbs2dm	fat	gnubands	hsx2hs	ol-stm	pipes_serial	rho2xsf	tbtrans	wfsx2wfs
cdf2grid	dm_creator	fcbuild	griaia	ioncat	optical	plstm	runJobs	ts2ts	xv2vesta
cdf2xsf	dmfilter	fdf2grimme	grid2cdf	ionplot.sh	optical_input	plsts	sies2arc	tscontour	xv2xsf
cdf_diff	dm_noncol_sign_flip4	fmixmd-driver	grid2cube	lindhard	orbmol_proj	protoNEB	siesta	unfold	
cdf_fft	dmUnblock	fmpdos	grid2d	lwf2cdf	pdosxml	psml2psf	stesta_qmmm	vib2vesta	
cdf_get_cell	eia2bxsf	fractional	grid2val	macroave	permute	psop	simplex	vib2xsf	
cdf_laplacian	Eig2DOS	g2c_ng	grid_rotate	md2axsf	phonons	pvtsp	sockets_parallel	vibra	
countJobs	eigfat/plot	gen-basis	grid_supercell	mixps	phonons-f08	read_spin_texture	sockets_serial	v_info	
denchar	f2fmaster	get_chem_labels	horizontal	mpi_driver	phtrans	readwf	spin_texture	wfs2wfsx	
dm2cdf	f2fslave	getResults	hs2hsx	mprop	pipes_parallel	readwfx	swarm	wfsnc2wfsx	

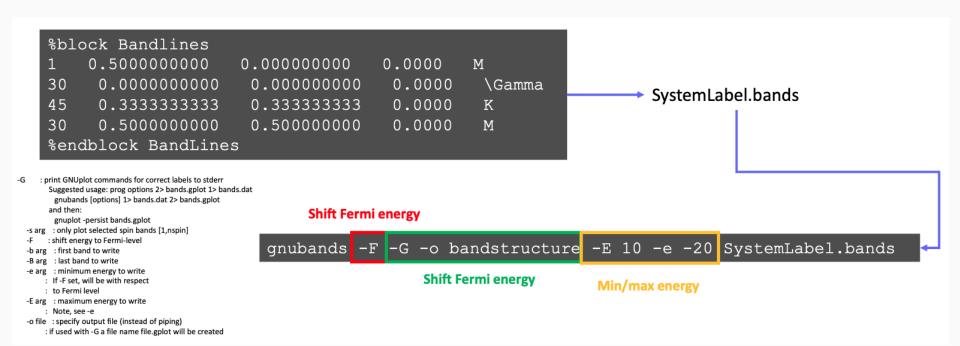

Utilities & others: plotting DOS

Utilities & others: plotting DOS

Eig2DOS output

```
EIG2DOS: Utility for SIESTA to obtain the electronic density of states
# E. Artacho, Apr 1999, A. Garcia, Apr 2012
# Nick R. Papior, Feb 2017
# Eigenvalues calculated from a spin-polarized calculation
# Eigenvalues read from graphene.EIG
# Kpoint weights read from graphene.KP
# Using smearing parameter: 0.1000
# Using 400 points in the energy range
# Selected bands: 1 to: 26
# Emin, Emax in file for selected band(s):
                                               -24.2236335
                                                              143.6658020
# Nbands, Nspin, Nk
                            26
                            -5.0301 eV --> (shifted to ZERO)
# E F
# Broadening
                            0.1000 eV
                      N(up)
                                    N(down)
                                                    Ntot
    -12.000000
                     0.000000
                                   0.000000
                                                 0.000000
    -11.964912
                    0.000000
                                   0.000000
                                                 0.000000
    -11.929825
                    0.000000
                                   0.000000
                                                 0.000000
    -11.894737
                    0.000000
                                   0.000000
                                                 0.000000
    -11.859649
                    0.000000
                                   0.000000
                                                 0.000000
    -11.824561
                    0.000000
                                   0.000000
                                                 0.000000
    -11.789474
                    0.000000
                                   0.000000
                                                 0.000000
    -11.754386
                    0.000000
                                   0.000000
                                                 0.000000
    -11.719298
                    0.000000
                                   0.000000
                                                 0.000000
    -11.684211
                    0.000000
                                   0.000000
                                                 0.000000
    -11.649123
                    0.000000
                                   0.000000
                                                 0.000000
    -11.614035
                    0.000000
                                   0.000000
                                                 0.000000
    -11.578947
                    0.000000
                                   0.000000
                                                 0.000000
    -11.543860
                    0.000000
                                   0.000000
                                                 0.000000
    -11.508772
                    0.000000
                                   0.000000
                                                 0.000000
                                                 0.000000
    -11.473684
                    0.000000
                                   0.000000
    -11.438596
                    0.000000
                                   0.000000
                                                 0.000000
    -11.403509
                    0.000000
                                   0.000000
                                                 0.000000
    -11.368421
                    0.000000
                                   0.000000
                                                 0.000000
    -11.333333
                    0.000000
                                   0.000000
                                                 0.000000
    -11.298246
                    0.000000
                                   0.000000
                                                 0.000000
    -11.263158
                    0.000000
                                   0.000000
                                                 0.000000
    -11.228070
                    0.000000
                                   0.000000
                                                 0.000000
    -11.192982
                    0.000000
                                   0.000000
                                                 0.000000
    -11.157895
                    0.000000
                                   0.000000
                                                 0.000000
    -11.122807
                    0.000000
                                   0.000000
                                                 0.000000
    -11.087719
                    0.000000
                                   0.000000
                                                 0.000000
    -11.052632
                    0.000000
                                   0.000000
                                                 0.000000
    -11.017544
                    0.000000
                                   0.000000
                                                 0.000000
    -10.982456
                    0.000000
                                   0.000000
                                                 0.000000
    -10.947368
                    0.000000
                                   0.000000
                                                 0.000000
    -10.912281
                    0.000000
                                   0.000000
                                                 0.000001
```


siesta


Utilities & others: plotting band structure

```
gnubands -F -G -o bands -E 10 -e -20 graphene.bands

gnuplot -e "set grid; set ylabel 'E - E_{F} (eV)'; set title 'Band structure of graphene'; set terminal png; set output 'bandstructure.png'; set key noautotitle; load 'bands.gplot'"
```

```
...
                                gnubands
$ gnubands -h
Usage: gnubands [options] [bandsfile|PIPE]
  bandsfile : SystemLabel.bands
       PIPE : < SystemLabel.bands
Options:
              : print help
              : print GNUplot commands for correct labels to stderr
                Suggested usage: prog options 2> bands.gplot 1> bands.dat
                   qnubands [options] 1> bands.dat 2> bands.qplot
                and then:
                   gnuplot -persist bands.gplot
              : only plot selected spin bands [1,nspin]
    -s arg
              : shift energy to Fermi-level
    -b arg : first band to write
    -B arg : last band to write
    -e arg : minimum energy to write
              : If -F set, will be with respect
              : to Fermi level
    -E arg : maximum energy to write
              : Note, see -e
    -o file : specify output file (instead of piping)
              : if used with -G a file name file.gplot will be created
```

Utilities & others: plotting band structure

Utilities & others: plotting band structure

```
gnubands -F -G -o bandstructure -E 10 -e -20 *.bands
gnuplot -persist bandstructure.gplot
set xtics ("M" 0.000000, "Gamma" 0.775088, "K" 1.670083, "M" 2.117581)
plot "bandstructure" using 1:2:3 with lines lc variable
# -- Use line below for single-color#plot "bandstructure" with lines
                                            "bandstructure" using 1:2:3
           -5
          -10
          -15
          -20
                               Gamma
             Results for graphene
```

```
# GNUBANDS: Utility for SIESTA to transform bands output into
#Gnuplot format
# Emilio Artacho, Feb. 1999 # Alberto Garcia, May 2012
# Nick Papior, April 2013, July 2016
# -----
# Bands for all spins
# E F / orig = 0.0000 - 5.0301
# k min, k max = 0.0000 2.1176
# E min, E max = -20.0000 10.0000
# Nbands, Nspin, Nk = 26 2 106
# Using min band, max band = 126
# Total number of bands = 26
# k E[eV]
0.000000 -14.038730 1
0.025836 -14.158130 1
0.051673 -14.413430 1
0.077509 -14.707530 1
0.103345 -15.009230 1
0.129181 -15.308430 1
0.155018 -15.601030 1
0.180854 -15.885030 1
0.206690 -16.159330 1
0.232526 -16.423330 1
0.258363 -16.676430 1
0.284199 -16.918530 1
0.310035 -17.149230 1
```

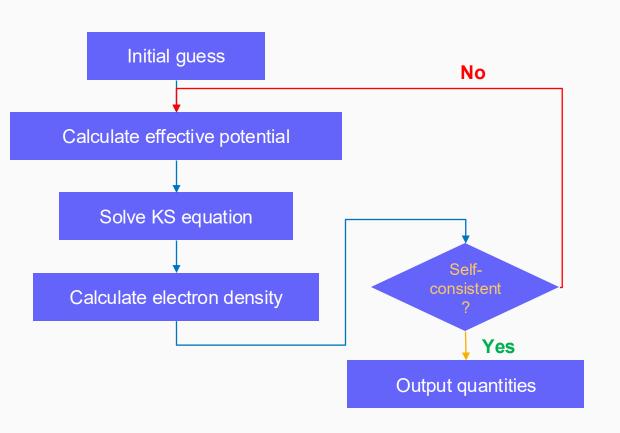
Reciprocal space: Summary & friendly some recommendations

Convergence k-point sampling is key for reliable periodic DFT results.

Use a single k-point (Γ -point) for isolated molecules, or very large systems.

Periodic systems require more k-points.

2D systems & slabs: sample in-plane only; kz=1 is fine if vacuum


Always validate with energy, forces, DOS, and band structures.

Guidelines and Best Practices (once again, to be taken with extreme care)

- Insulators/semiconductors: start with 4×4×4 or 6×6×6 for a few-atom unit cell
- Metals: dense meshes needed (20×20×20 or higher) / electronic T can also help
- Always monitor Fermi level shifts.
- Spiky DOS: denser k-grid or larger broadening.
- Misaligned bands: check consistent k-paths.
- Fermi level jumps: increase grid, include high-symmetry points.
- Slow SCF: reuse density matrix, adjust mixing.
- High computational cost: test on smaller cells, transfer to full system.

SCF Convergence

SCF Convergence

The physical quantity that is mixed:

Density matrix
Hamiltonian matrix

Mixing algorithm:

Linear

Broyden
Pulay

N previous steps

SCF convergence

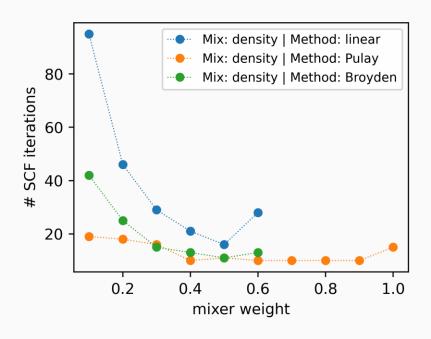
- SCF.Mix [default Hamiltonian]:
 - Density -> for systems hard to converge
 - Hamiltonian
- SCF.MixerMethod [default Pulay]
 - o Linear
 - > Pulay
 - Broyden
- SCF.Mixer.Weight [default 0.25]
 - 0.001 hard to converge systems ->lots of steps
 - O 0.4 easier systems -> reduce steps
- SCF.Mixer.History [default 2]
- Max.SCF.Iterations [default 1000]
- SCF.DM. Converge F [default T]
- SCF.H.Converge F [default T]

All of them strongly dependent on the system!

SCF.Mix Hamiltonian SCF.MixerMethod Pulay SCF.Mixer.Weight 0.3

SCF.DM.Tolerance 10⁻⁴ SCF.H.Tolerance 10⁻³ eV

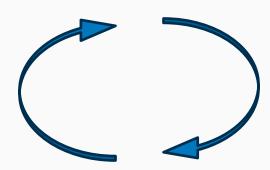
Max.SCF.Iterations 75


SCF.MixerMethod pulay SCF.Mixer.Weight 0.2

SCF.Mixer.History 5

More advanced options ... (manual)

Oscillating E_{total} could indicates poor mixing


SCF NOT CONV:

How do I converge the whole calculation?

- 1. Optimize the Basis set
- 2. Converge real space mesh: Energy
- 3. (Converge K grid: increase it for metallic systems)
- 4. SCF mixing

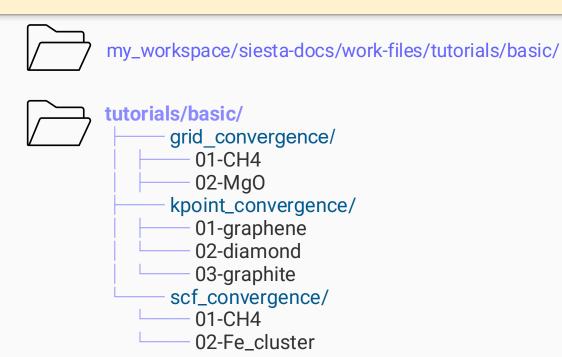
Let's play!

Tutorials

This set of tutorials will guide you in the exploration of Siesta's features.

Before you do anything else, start here. You need to set up your local working environment to follow the tutorial.

• Setting up the local working environment for the tutorial exercises


Basics of Siesta

This section is recommended for all beginners, and also as a refresher for more experienced users.

- · A first encounter with Siesta
- First crystals
- Pseudopotentials
- Basis sets
- · Basis set optimization
- The real-space grid
- Sampling of the BZ with k-points
- The self-consistent-field cycle
- Structural optimization using forces and stresses
- · Vibration modes and phonons
- Magnetism

How is the material organised?

OBJECTIVES

Compare input vs generated mesh

Progressively increase the Cutoff in the CH₄ example, and plot:

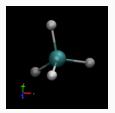
- Total Energy (and ΔE , using highest cutoff as reference)
- Forces
- Computational time

Test egg-box effect in MgO unit cell

- Total Energy vs mesh shift
- Forces
- Computational time

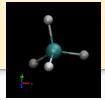
INPUTS FOLDER

basic/grid_convergence ----- 01-CH4/


OUTPUTS FOLDER

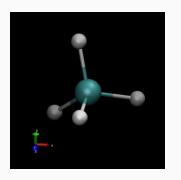
- Copy all files from the input folder to the exercise folder.
- 2. In this exercise you will do a scan modifying the mesh cutoff value.

#Real space grid MeshCutoff 125.0 Ry


Everything depends on how you organize it


Mesh cutoff: 30 60 90 120 150 180 210 240 270 300

siesta: Total = -221.815381

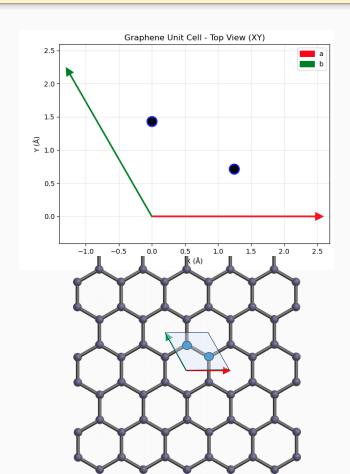


Basis set definition PAO.BasisSize SZ PAO.EnergyShift 250 meV

#Real space grid MeshCutoff 125.0 Ry **DZP**

50-100 meV

150 Ry


OBJECTIVES

Check k-point convergence

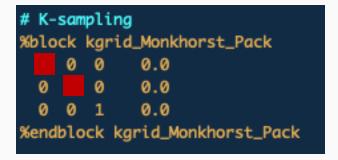
Plotting electronic structure features

- PDOS
- band structures

Try different materials: graphene, diamond, graphite

INPUTS FOLDER

siesta/kpoint-convergence


01-graphene/

OUTPUTS FOLDER

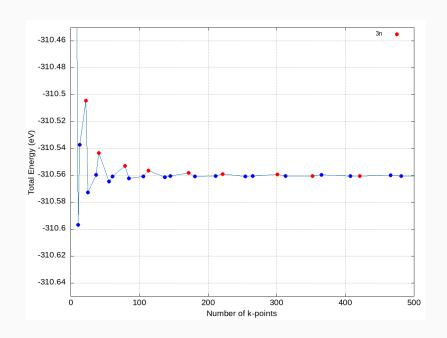
siesta/

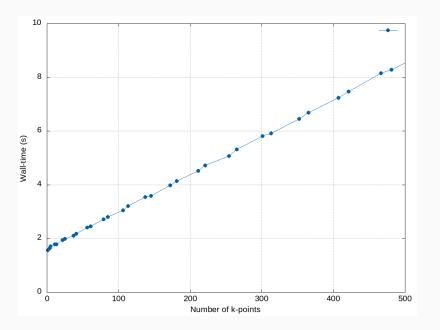
----- exercise_day3/ ----- create your own folders

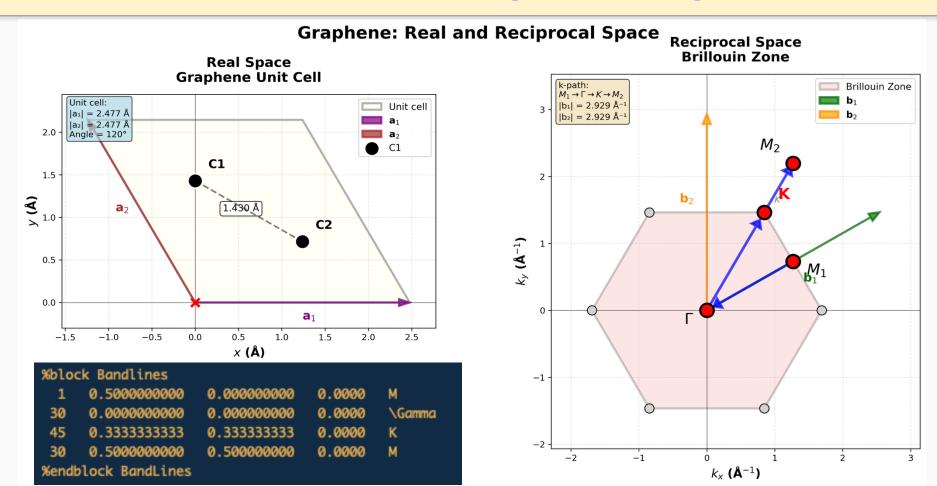
- 1. Copy all files from the input folder to the exercise folder.
- 2. In this exercise you will do a scan modifying the Monkhorst_pack block.

Monkhorst block: 1, 2, 3, 4, ...

siesta: k-grid: Number of k-points = 22




Using: Y=1

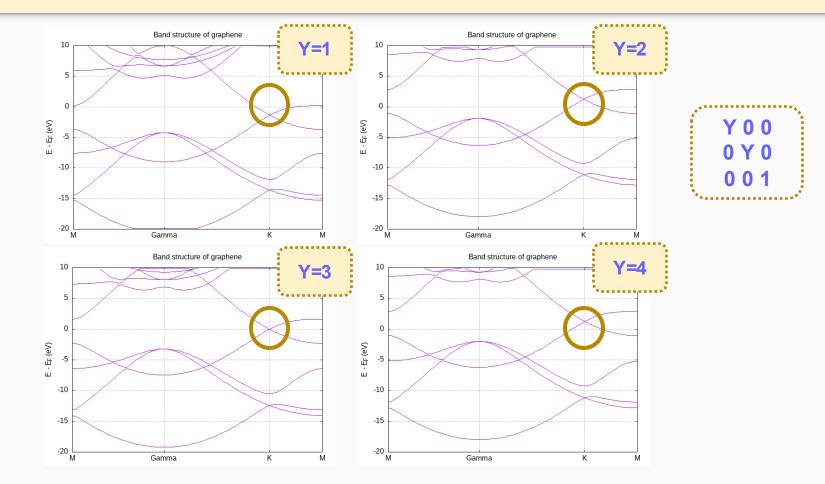

**		
1	0	0
0	1	0
1 0 0	0	0 0 1
·		

Using: Y=2

2	0	0
0	2	0
0	0	1

INPUTS FOLDER

siesta/kpoint-convergence /


— 01_graphene/

OUTPUTS FOLDER

- 1. Copy all files from previous exercise folder to new exercise.
- 2. In this exercise you will redo the Graphene exercise 4 but this time uncomment the following options:

```
#WriteKbands
#WriteBands
#BandLinesScale
                    ReciprocalLatticeVectors
#%block Bandlines
       0.50000000000
                      0.000000000
                                     0.0000
                                              М
       0.0000000000
                      0.000000000
                                     0.0000
                                              \Gamma
       0.3333333333
                      0.333333333
                                     0.0000
                                              к
       0.50000000000
                      0.500000000
                                     0.0000
                                              М
#%endblock BandLines
```


Tutorial #3: SCF convergence

OBJECTIVES

Tests different mixing strategies

- Mixing methods
- Adjust weight
- History

Check different systems

- Simple molecule
- More challenging metal cluster

Tutorial #3: **SCF convergence**

INPUTS FOLDER

siesta/scf_convergence ----- 01-CH4/

OUTPUTS FOLDER

- 1. Copy all files from input folder to the exercise folder.
- 2. In this exercise you will scan three keywords:

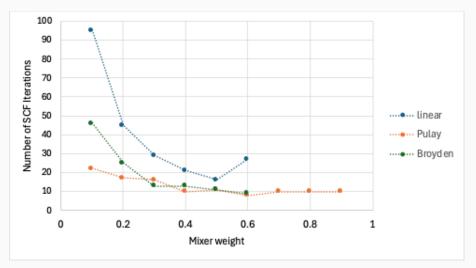
Add these lines in the input file

- SCF.mix density
- SCF.mixer.method linear
- SCF.mixer.weight 0.6

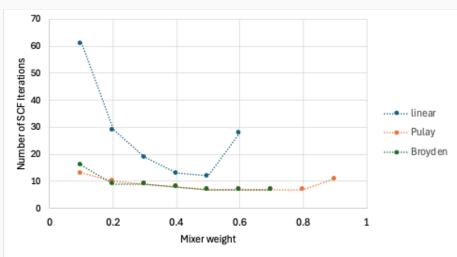
comment:

#MaxSCFIterations 50

{ density | hamiltonian }


{ Iinear | Pulay | Broyden }

{ 0 | 0.1 | 0.2 | ... | 1 }


- 0: New DM is the same as in the previous step
- 1: New DM is totally different from the previos step

Tutorial #3: **SCF convergence**

Mixing Density Matrix

Mixing Hamiltonian

Thank you

Questions?

