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Program
2. The SIESTA code

 What is SIESTA? Main characteristics

« The Kohn-Sham Equations in a basis set

« The LCAO approach: (Pseudo) atomic orbital bases

« PAOs with finite support

« Radial and Angular components of the basis, and how to improve the solution
« The SCF Cycle and its two main steps:

* Building H — some details

» Solving the KS egs to find the density - some solvers
 Periodic boundary conditions and BZ sampling
« SCF convergence — mixing algorithms



Main characteristics

siesta

- Fast for large systems => from O(N?3) to Order-N
- From "quick & dirty” to highly accurate

Methods and approximations

- Norm-conserving pseudopotentials

- Basis of numerical atomic orbitals

- Uniform real-space grid

- Several solvers (diag, PEXSI, Order-N, Greens Functions, ...)

Introduction to basics only
(SIESTA can do many more things than presented here!)



Kohn —

Interacting electrons: As if non-interacting electrons in an effective

Sham formulation

potential (Kohn-Sham Ansatz)
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Expand KS states in a basis
Basis set: {le,), u=1...N} ¢,(r) = (rley)

Schrodinger (Kohn-Sham) eq. H|vy,,) = E,|v,) becomes

ZHMVCI/?I = E, Z S,Lwcun
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Basis set — LCAO - atomic orbitals

Numerical (pseudo)atomic orbitals (PAOs)
& real spherical harmonics

Qbam(?”; 0,p) = Rg(r)ylm (6, 9)

Y,,(0,0)=C,, B"(cosf)xx

sin(mep) if m<0

cos(me) 1t m=0

[=1, m=-10+41 = p,p.,p,



Finite-support atomic orbitals as basis
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. e Frc_e atom
—— This work

W(r)

Strictly localised

(zero beyond cut-off radius)




Finite-support atomic orbitals as basis

Only 2 conditions
1. ¢§’lm(r 0,p) = Ré’(r)ylm(e ®)

. Finite range

User decides

 How many angular momenta

' * How many centres
 Where to put them (on atoms or not)

 How many for each ang. momentum

 Each radial shape



Finite-support atomic orbitals as basis

Gam(1,0,9) = RAr)Y;;n (6, @)
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Basis Size: how many orbitals?

¢§lm(r: 0,p) = R;(r)ylm (6, 9)

« How many angular components?
P d f

« How many radial functions for each angular component?

S

Quick exploratory Highly converged
calculations calculations
Minimal basis set Mult-il.ple-z

(single-C; SZ) Polarization

+

Diffuse orbitals



Minimal Bases (SZ2)

¢4’lm(rr 0,¢) = R((T)Ylm (6, 9)

« Minimal bases: One radial function per occupied shell in the free atom

Single-{ (or SZ) (eg: Si: one 3s orbital and three 3p orbitals)



Numerical (pseudo)atomic orbitals (PAOs)

bam (r,0,9) = R;’(T)Ylm (6, 9)

Solution of the Schrodinger Eq. in the atom with a given pseudopotential ...
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i~ —+=- Free atom
— This work

» Energy Shift 03
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... with a confining potential _ n
« Strictly confined atomic orbitals, either with a hard :gzo ;
or a soft confinement (user’s choice) g, _
« Several ways to define the confinement radii N
r@n)_ '
. CPU and accuracy depend on r. = need to check! T B e sttt e s

Junquera et al Phys. Rev. B 64, 235111 (2001



Minimal Bases (SZ2)

¢4’lm(rr 0,¢) = R((T)Ylm (6, 9)

« Minimal bases: One radial function per occupied shell in the free atom

Single-{ (or SZ) (eg: Si: one 3s orbital and three 3p orbitals)

« How do we improve upon the SZ? (common wisdom in QC community)

1.
2.
3.

Increasing the number of radial functions for each angular component
Increasing the number of angular components
Introducing diffuse radial functions

Introducing off-site orbitals



Radial flexibility

¢4’lm(rr 0,¢) = R((T)Ylm (6, 9)

« Minimal bases: One radial function per occupied shell in the free atom

Single-{ (or SZ) (eg: Si: one 3s orbital and three 3p orbitals)

« Several radial functions to describe an
atomic shell (same angular part):

Multiple-C:

Double-{ Triple-C .....

SIESTA has several ways to define the shape of the second, third, ... functions
(advanced users)



More Angular Components

¢4’lm(r: 0,9) = Rg(r)ylm (6, 9)

» “Polarization” orbitals
Orbitals with higher angular momentum than those occupied in the free atom

Atom| Valence SZ DZ P
configuration|
# orbitals symmetry|# orbitals symmetry| # orbitals symmetry
Si 3s? 3p? 1 s 2 s 1 dry
1 P 2 De 1 dy,
1 Dy 2 Py 1 .
1 D 2 Dy 1 dya_yz
1 dy,2_s2
Total 4 8 (DZ+P) 13

Atom| Valence

configuration|
# orbitals symmetry|# orbitals symmetry| # orbitals symmetry

Fe 4s% 346 1 s 2 s 1 Do
1 day 2 Ay 1 Dy
1 dy, 2 dy, 1 -
1 4, 2 4,
1 doa_yp 2 doa_z
]. dazﬂ_,rﬂ 2 dazﬂ_'.?

Total 6 12 (DZ+P) 15

SIESTA has several ways to define the “polarization” orbitals
(advanced users)



Convergence as a function of the size of the
basis set: Bulk Si

Cohesion curves PW and NAO convergence
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Atomic orbitals show nice convergence with respect the size
Polarization orbitals very important for convergence (more than multiple-¢)

Double- plus polarization is typically an excellent choice (compromise between accuracy and cost)



Computational Effort;:
Two steps and SCF cycle

Atomic positions
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1. Building: Computing H (and S)
J. Phys.: Condens. Matter 14 (2002) 2745-2779

Electronic charge density
H=T+ Vign(r) + Vy+ Vy(r) + V(1) of the neutral atom

X N A
Ny Va —
Long range pscr(r) = po(r) + 6p(r)

Voa(r) = Vien(r) + Vylpo(r)]  Neutral-atom potential

OVy(r) = Vilpscr(r)] - Vulpo(r)] = Vylop(r)]

H=T+ an+ Vna(r) T 8VH (l’) T ch(r)

~_ - — /
Two-center

Grid integrals |
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1. Building (a)

Two-center integrals

Convolution theorem

S(R)= <¢1

$,) = [ 4 () §,(r—R)dr

p(k) =

(2 )2/3

[p(r)e™ar

S(R) = [ 4,(K) ¢, (k) ™" dk

=-(1/2) v*

an 20 1> &, <%y| Kleinman-Bylander



1. Building (b): on a real-space grid

(discretise space)
(ulvlon) = [ 0.V @00

Vi) = Zulciu("u(r) ~ z Pu(V () oy (1)
Puv = 2 CiuCiy |

p(r) =2 Wi (M=) p,.0, ()0, (r)

OP(1) = Pscr (1) = Patoms (1)
p(r) => V. (1)
op(r) = oV (1)

FFT




1. Building (b): on a real-space grid
(discretise space) 0, (r)

« The grid spacing should be small enough,
and that depends on each system.

« Grid spacing defined by the Energy Cutoff
- Ecut (Ry) like in plane waves (maximum
kinetic energy of plane waves that can be
represented in the grid)

Ax = k=n/Ax = E,,=h’k2/2m,

®,(r)

* Important convergence parameter in SIESTA
« Calculation of all matrix elements is O(N) for large systems!

= (ofile) ©

Sparse Matrices B
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Poisson equation

V2V4(r) = - 47w p(r)
p(r) = 2spg € = Vy(r) =2V, e
Vg=-4m pg/ G

FFT FFT

p(r) = pg— Vg — Vy(r)

* SIESTA (normally) uses periodic boundary conditions
* Net charge compensated by uniform background
* Spurious interactions between ‘images’



Egg-box effect

«— (rid points

«—— Orbital/atom

AU VAN
./ U U

Higher effects on forces than on energy

Grid-cell sampling



Grid fineness convergence
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Computational Effort;:
Two steps and SCF cycle

Atomic positions

'
DMin
1. Build l
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2. Solve /

\ > Results
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Expand KS states in a basis
Basis set: {le,), u=1...N} ¢,(r) = (rley)

Schrodinger (Kohn-Sham) eq. H|vy,,) = E,|v,) becomes

> oy = B Z S o
where v
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Once the hamiltonian and the overlap matrices
are built, we have to solve the Schrodinger Eq.

ZHW/CV” — En Z S,uucun

CPU load

NxN NxlI NxN NxI
~100-1000 N (# atoms)
Order-N3 Order-N
Standard diagonalization techniques Minimization of an energy functional...
Very well optimized libraries (in parallel too) .... or direct computation of density matrix
Exact (to machine precission) Eigenvalues and eigenvectors not available
Both eigenvectors and eigenvalues available Some (locality) approximations

Not valid for metals or “dirty” gap systems

Linear algebra libraries are essential for this step, as it is the dominant one
for medium and large systems



Once the hamiltonian and the overlap matrices
are built, we have to solve the Schrodinger Eq.

Order-N3
Z H“VCWZ — En Z S“VCVn Diagonalization:
v v Generalized Eigenvalue Problem
NxN Nxl NxN NxI
Serial: Parallel:
BLAS BLACS
LAPACK SCALAPACK

ELPA: alternative transformation sequence +
optimizations https://elpa.mpcdf.mpg.de/

Freely available in http://www.netlib.org

Most machine vendors have their own implementations available for their own
platforms (acml, mkl,...).


http://www.netlib.org/

Once the hamiltonian and the overlap matrices
are built, we have to solve the Schrodinger Eq.

Solver strategies for performance and features: Use external libraries

~ Alberto Garcia

1 ]
ELSI initiative to integrate solver libraries & & ICMAB-CSIC

https://elsi-interchange.org

Electronic Structure Codes

FHI-aims SIESTA DFTB+ o
Interface in Siesta:

Volker Blum, Duke and many others
H& 51 Tlp 2 DM Collaboration with
Victor Yu
. Matrlx ParaIIeI
\ | Conversmn I/O
SEin; SeRKsioy H &S 1 tb & DV’ 1 T Matrices
3]
R Solvers File
K7 . system
E W - h ELPA | | PEXS! | 4 many o
' others NTPoly (DM purification, O(N))
Jiangfen Lu, Duke OMM SIPs ’

DLA-F, ChaSE

7 DRIVING
WX THE EXASCALE
TRANSITION



Periodic Boundary Conditions (PBC)

Atoms in the unit cell are periodically repeated
throughout space along the lattice vectors

Periodic systems and crystalline solids:

Aperiodic systems: Supercell approximation

Defects Molecules Surfaces

M. C. Payne et al, Rev. Mod. Phys., 64, 1045 (92)



k-sampling
Many magnitudes require integration of functions
over the Brillouin zone (BZ)

p(7) =, fdkn(kf (k)

i Bz
In practice: integral — sum over a finite uniform grid

Essential for:
Small systems Metals  Magnetic systems

5 Good description of the Bloch
states at the Fermi level

< . Even in insulators:
Perovskite oxides

Real space




Regular k-grid

k-point sampling

(fineness of grid in k-space)

o

«—

First Brillouin Zone

Inequivalent
points

Monkhorst-Pack

<+“—>

Ak = L=n/Ak

L.= ‘length cutoff’



Self-consistency

PROBLEM: The potential (input)
depends on the density (output)

n. -V - N - N

n Q out

| nn _nn—l |> &




Selfconsistency convergence
SCF cycle:  p(r) - V(r) = p(r)

p(r) Charge sloshing
E, E;
_________________________________ Ep
E, Ey
Energy

Moderated by electronic temperature



Linear mixing

n'(r) = ppt(r)

Pty (0 = lapf™ (1) + (1 — a)p*(r)

Large a: larger amount of output, faster convergence, but
instabilities appear beyond some critical value (system-dependent)

Smaller a: smaller amount of output, slower convergence, but more
stable

In practice: find the optimal a - as large as possible but
convergent

You can choose to mix the charge or the Hamiltonian



Pulay mixing
pr(r) = pRHt(r)

6pn(r) = Ut (r) ,0 " (r)

pina (r) = Z @ (@pR () + (1= api (1)}

k=n—-m

n

6pns1(r) = z Cr0pi (r) = min

k=n—-m



Important choices: S I e Sta

1. The Pseudopotential and the DFT functional
2. The basis set

- Size -SZ,DZ, DZP, ...;

- Confinement radii

3. The solution method / libraries (diag)
4. The real space grid and the k-point sampling
5. SCF parameters



Thank you!

Questions? pablo.ordejon@icn2.cat



