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Program
2.The SIESTA code
• What is SIESTA?  Main characteristics
• The Kohn-Sham Equations in a basis set
• The LCAO approach:    (Pseudo) atomic orbital bases 
• PAOs with finite support
• Radial and Angular components of the basis, and how to improve the solution
• The SCF Cycle and its two main steps:  

• Building H – some details

• Solving the KS eqs to find the density - some solvers
• Periodic boundary conditions and BZ sampling
• SCF convergence – mixing algorithms



Main	characteristics
- Standard	DFT
- Fast	for	large	systems	=>	from	O(N3)	to Order-N
- From	”quick	&	dirty”	to	highly	accurate

Methods	and	approximations
- Norm-conserving	pseudopotentials
- Basis	of	numerical	atomic	orbitals
- Uniform	real-space	grid
- Several	solvers	(diag,	PEXSI,	Order-N,	Greens	Functions,	…)

Introduction	to	basics	only
(SIESTA	can	do	many	more	things	than	presented	here!)



Kohn – Sham formulation 
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Interacting electrons: As if non-interacting electrons in an effective 
potential (Kohn-Sham Ansatz)
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Expand KS	states in	a	basis



Basis set	– LCAO	– atomic orbitals

Numerical (pseudo)atomic orbitals (PAOs)	
&	real	spherical harmonics
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Finite-support	atomic	orbitals	as	basis

s

p

d

f
Strictly	localised	

(zero	beyond	cut-off	radius)



Finite-support	atomic	orbitals	as	basis
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Only	2	conditions

1.

2.		Finite	range

User	decides

• How	many	centres

• Where	to	put	them	(on	atoms	or	not)

• How	many	angular	momenta

• How	many	for	each	ang.	momentum

• Each		radial	shape



Finite-support	atomic	orbitals	as	basis
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Basis Size:   how many orbitals?

• How many angular components?

• How many radial functions for each angular component?

s          p           d              f       ….

Quick exploratory
calculations

Highly converged 
calculations

Multiple-ζ
+

Polarization
+

Diffuse orbitals

Minimal basis set
(single-ζ; SZ)



Minimal Bases  (SZ)

• Minimal bases: One radial function per occupied shell in the free atom

Single-ζ (or SZ)    (eg:  Si:   one 3s orbital and three 3p orbitals)



Numerical	(pseudo)atomic	orbitals	(PAOs)

Solution of the Schrödinger Eq. in the atom with a given pseudopotential …

• Strictly confined atomic orbitals, either with a hard 
or a soft confinement  (user’s choice)

• Several ways to define the confinement radii

• CPU and accuracy depend on rc à need to check!

… with a confining potential



Minimal Bases  (SZ)

• How do we improve upon the SZ? (common wisdom in QC community)

1. Increasing the number of radial functions for each angular component

2. Increasing the number of angular components

3. Introducing diffuse radial functions

4. Introducing off-site orbitals

• Minimal bases: One radial function per occupied shell in the free atom

Single-ζ (or SZ)    (eg:  Si:   one 3s orbital and three 3p orbitals)



Radial flexibility

• Several radial functions to describe an
atomic shell (same angular part):

Multiple-ζ:

Double-ζ Triple-ζ …..

• Minimal bases: One radial function per occupied shell in the free atom

Single-ζ (or SZ)    (eg:  Si:   one 3s orbital and three 3p orbitals)

SIESTA has several ways to define the shape of the second, third, … functions 
(advanced users)



More Angular Components

• “Polarization” orbitals
Orbitals with higher angular momentum than those occupied in the free atom

SIESTA has several ways to define the “polarization” orbitals
(advanced users)



Convergence as a function of the size of the 
basis set: Bulk Si

Cohesion curves PW and NAO convergence

Atomic orbitals show nice convergence with respect the size 

Polarization orbitals very important for convergence (more than multiple-z)

Double-z plus polarization is typically an excellent choice (compromise between accuracy and cost)



Computational Effort:
Two steps and	SCF	cycle

Atomic	positions

S

DMin

H
1.	Build

DMout

2.	Solve

Iterate

Results



1.	Building:	Computing	H	(and	S)

H =	T +	Vion(r)	+	Vnl+	VH(r)	+	Vxc(r)

Long range

dVH(r)	=	VH[rSCF(r)]	- VH[ro(r)]	=	VH[𝛿r(r)]	

H =	T +	Vnl+	Vna(r)	+	dVH (r) +	Vxc(r)

Grid integralsTwo-center

integrals

𝜌!"# 𝑟 = 𝜌$ 𝑟 + 𝛿𝜌(𝑟)

Electronic charge density 
of the neutral atom

Vna(r)	=	Vion(r)	+	VH[ro(r)] Neutral-atom potential



1.	Building (a)
Two-center	integrals
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Convolution theorem

T =	-(1/2)	Ñ2	

Vnl =	åa |ca>	ea <ca|		Kleinman-Bylander



1.	Building (b):	on a	real-space grid
(discretise space)	
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• The grid spacing should be small enough, 
and that depends on each system.

• Grid spacing defined by the Energy Cutoff 
– Ecut (Ry) like in plane waves (maximum 
kinetic energy of plane waves that can be 
represented in the grid)

1.	Building (b):	on a	real-space grid
(discretise space)	

• Important convergence parameter in SIESTA
• Calculation of all matrix elements is O(N) for large systems!

!µµ! "h"h ˆ=ˆ

Sparse Matrices

Dx Þ kc=p/Dx Þ Ecut=h2kc2/2me



Poisson equation
Ñ2VH(r)	=	- 4p r(r)

r(r) = åG rG eiGr Þ VH(r)	=	åG	VG eiGr

VG =	- 4p rG /	G2

r(r)	®rG® VG® VH(r)	
FFT FFT

• SIESTA	(normally)	uses	periodic boundary conditions
• Net	charge compensated by uniform background
• Spurious interactions between ‘images’



Egg-box	effect

Higher effects on forces than on energy

Grid-cell sampling

E
x

Grid points

Orbital/atom



Grid	fineness	convergence
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Computational Effort:
Two steps and	SCF	cycle

Atomic	positions

S

DMin

H
1.	Build

DMout

2.	Solve

Iterate

Results



Expand KS	states in	a	basis



Once	the	hamiltonian and	the	overlap	matrices	
are	built,	we	have	to	solve	the	Schrodinger	Eq.

Order-N
Minimization of an energy functional…

…. or direct computation of density matrix

Eigenvalues and eigenvectors not available

Some (locality) approximations

Not valid for metals or “dirty” gap systems

Order-N3

Standard diagonalization techniques

Very well optimized libraries (in parallel too)

Exact (to machine precission)

Both eigenvectors and eigenvalues available

N  (# atoms)

CPU load

~ 100-1000

~ N

~ N3

N ´ N N ´ N N ´ 1N ´ 1

Linear algebra libraries are essential for this step, as it is the dominant one 
for medium and large systems



Once	the	hamiltonian and	the	overlap	matrices	
are	built,	we	have	to	solve	the	Schrodinger	Eq.

Order-N3

Diagonalization:  

Generalized Eigenvalue Problem
N ´ N N ´ N N ´ 1N ´ 1

Serial:

BLAS
LAPACK

Parallel:

BLACS
SCALAPACK

ELPA: alternative transformation sequence + 
optimizations   https://elpa.mpcdf.mpg.de/

Freely available in http://www.netlib.org

Most machine vendors have their own implementations available for their own 
platforms (acml, mkl,…). 

http://www.netlib.org/


Once	the	hamiltonian	and	the	overlap	matrices	
are	built,	we	have	to	solve	the	Schrodinger	Eq.

Alberto García
ICMAB-CSIC







k-point sampling
(fineness of	grid in	k-space)

First	Brillouin	Zone

Regular	k-grid

Inequivalent	
points

Monkhorst-Pack

Dk Þ Lc=p/Dk

Lc=	‘length cutoff’



Self-consistency
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PROBLEM: The potential (input) 

depends on the density (output)



Selfconsistency convergence
SCF	cycle:						𝛒(r)	→	V(r)	→ 𝛒(r)

Energy

E1

E2 E1

E2

Charge sloshing

EF

𝛒(r)

Moderated by electronic temperature



Linear	mixing

𝜌%&% r → 𝜌%$'( r

𝜌%)*&% r = 𝛼𝜌%$'( r + (1 − 𝛼)𝜌%&% r

• Large 𝛼: larger amount of output, faster convergence, but 
instabilities appear beyond some critical value (system-dependent)

• Smaller 𝛼: smaller amount of output, slower convergence, but more 
stable

• In practice:  find the optimal 𝛼 – as large as possible but 
convergent

• You can choose to mix the charge or the Hamiltonian



Pulay mixing

𝜌%&% r → 𝜌%$'( r

𝛿𝜌% r = 𝜌%$'( r -𝜌%&% r

𝜌%)*&% r = .
-.%/0

%

𝑐- { 𝛼 𝜌%$'( r + 1 − 𝛼 𝜌%&% r }

𝛿𝜌%)* r = .
-.%/0

%

𝑐-𝛿𝜌- r = 𝑚𝑖𝑛



Important	choices:

1. The	Pseudopotential	and	the	DFT	functional
2. The	basis	set	

• Size	- SZ,	DZ,	DZP,	…;		
• Confinement	radii

3. The	solution	method	/	libraries	(diag)
4. The	real	space	grid	and	the	k-point	sampling
5. SCF	parameters



Thank you!

Questions? pablo.ordejon@icn2.cat

  


