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1986

3

"There must be something wrong
with your calculations.”

2010

#

"There must be something wrong
with your experiments."

Computational Materials Science

R. Mata and M. A. Suhm, Angew. Chem. Int. Ed. 2017, 56, 11011 — 11018



Why Computer Simulation?

The advantages of Simulations (the “virtual lab”)
e Basic understanding
e Focus on specific details
e Systems and conditions not feasible in experiments
e Specify external conditions

These give us:
e Predictive power
e Aid in the interpretation of experiments

Further advantages:

e Solve complex (i.e., realistic) models without approximations

e Scales up with the available computer power
e Developing simulation methods allows us to understand the physics



Materials Simulations CupraSelect®
An example of industrial interest: PRODUCTS £=

Chemicals for the CVD deposition of Cu for electrodes in microelectronic circuits
Problems of adhesion when deposited over Ta films

Industrial project with Air Products
Machado, Kaczmarski, Ordején, Garg, Norman and Cheng, Langmuir 21, 7608 (2005)

US Patent 7985449



Materials Simulations
Ingredients of a Simulation

Simulation in materials: Study the way in which the “blocks” that build
the material interact with one another and with the environment, and
determine the internal structure, the dynamic processes and the
response to external factors (pressure, temperature, radiation, etc...).

1. A model of the interactions
between the “blocks” that build
the material.

Here: atomistic models.

2. A simulation algorithm: the
numerical solution to the
equations that describe the
model.

3. A set of tools for the analysis of
the results of the simulation.




The "model of the interactions” and
the "equations of motion":

Going to First Principles (or ab-initio)

« What are materials made of?
Nuclei and electrons

 Which are the fundamental laws that describe the
behaviour of nuclei and electrons in materials?
Electromagnetic forces
Quantum Mechanics
Special Relativity
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Going to First Principles (or ab-initio)

“The general theory of quantum mechanics is now almost
complete. The underlying physical laws necessary for the
mathematical theory of a large part of physics and the
whole of chemistry are thus completely known, and the
difficulty is only that the exact application of these laws
leads to equations much too complicated to be soluble.”

Paul Dirac, Proc. Roy. Soc. (London) A123, 714 (1929).

“It therefore becomes desirable that
approximate practical methods of
applying quantum mechanics should be
developed, which can lead to an
explanation of the main features of
complex atomic systems without too
much computation.”



Why care about electrons and Quantum

Mechanics?

Let's just consider atoms as classical objects, model their
interactions using classical potentials and use Newton's
classical laws to describe their motion

Empirical potentials
Force Fields
Classical Molecular Dynamics

Extremely easy equations (Newton)
Easy to implement in computer codes
Low computational cost

System-dependent
Limited generality

Need fitting to data from
experimental or higher-level theory

Overfitting — extrapolating

Limited flexibility of predefined
functional forms



Example: The AMBER Force Field

A classical, empirical Force Field very popular in biology
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Why take that extra work?

Energy Function:

Emprical

First-principles

eg interatomic potential,
MM
Cost: LOW

Accuracy: Good in
properties used n fit

Applicability: Simple
cases-elements

Many parameters
eg. 510 13 parameters

eg. density functional theory
based methods

Much higher

Uniformiy good

Creneral

+ information about
Parameter-free the electrons,
their dynamics,

Unbiased, Reliable, o
excitations, etc

great predictability!

Fron Umesh Waghmare; http://nanohub.org/resources/9683/supportingdocs



But... computational cost!

SIZE
1.000.00
EMPIRICAL POTENTIALS
@ large systems
@ low transferability
® no electronic structure
10.00

TIGHT-BINDING (SEMI-EMPIRICAL)

@ transferability depends on the system
and on the parametrization
1000 ® ‘‘reasonable size’’

@ clectronic structure

100 AB-INITIO
@ good transferability

@ small systems
@ clectronic structure

TRANSFERABILITY

(Warning!!: Old slide!! Now sizes affordable are significantly larger ... x10 at least)



But... computational cost! \!

Scaling or "complexity" of a simulation method: @?\@

The relation between computing time T (CPU} ° ©@ Jt degrees of

freedom N (number of atomic coordinat- @% oth...)

T oc O(N) in the bes* @Q@ (inear scaling)

emp’’ %®9\{9 .Jt not always)
T oc O(N™ o%@@® .1ar methods

S Q . diagonalisation and inversion) (Some schemes towards O(N))
some models and systems

N
K% (Quantum chemistry; multiple minima problems, etc)



Critics of computer simulation

* Calculation without Classic Standards is Dangerous.
A Computer is Incapable of Setting its own Standards.

* By its Emphasis on Application of the Already Known, Computing can
Delay Basic Discovery and thus Reduce the Field of Applications in the Future.

* Classic Theories used Inductive and Deductive Models.
Computing Encourages Floating Models.

(Headings from the essay: "The Computer: Ruin of Science and Threat to Mankind", by
Clifford Truesdell, in “An Idiot's Fugitive Guide to Science”, Springer, 1 984)

A simple model can shed more light on Nature’s workings than a series
of “ab-initio” calculations of individual cases, which, even if correct, are
so detailed that they hide reality instead of revealing it. ...A perfect
computation simply reproduces Nature, it does not explain it.

(P.W.Anderson)




Program

1. Density Functional Theory

« Solving the quantum mechanical problem: approximations



The ab-initio approach

 The problem: To obtain the energies and forces on the atomic nuclei by
solving the quantum mechanical problem.

Mathematically: Solve Schrodinger’s eq.:

L AP, R 1)
dt

= HY({r,,R, };1)

HY({r,R,})= E¥({r.,R,})

Ao

hZ h2
V=) Vi VAR

2 “oM, \

Coulomb interactions



The ab-initio approach .

HY({r.R,})= E¥{r.R,})

How do we simplify to make computations feasible? (remember Dirac’s comment)




The Kinetic Energy
H=T+V,_(r) [ =——UV

The smaller the mass, the larger the quantum delocalization effect:
A quantum particle in a parabolic well in its ground state

m, — 00 >>>> m, > m;y

(Classical limit)



The Born-Oppenheimer Approx.
Saparating the Electronic and Ionic degrees of freedom:

« Born-Oppenheimer approximation. decouple the ionic and electronic
degrees of freedom

qj({ri’RI}) = I/J{R,} ({rl}) * X({Rl})

 Retains the quantum description of both electrons and ions. Assumes that
mass of ions is much larger than mass of electrons

H, g, ((63) = EQR Dy, ({03) - H, === VI + VR,

« Classical ions approximation: lons are treated classically, because of
their large mass; electrons are treated quantum mechanically.

. . oE({R
« Ionic dynamics — Atomic forces and Newton'’s law F,=Ma, =- é; )
1




The (electronic) Many Body Problem
Hpw, ({}) = ECR, D Y, ({1})

2
He=—h

MV +V{r.R,})

2m,

I/ext I/I

Vaxt(F) may include also other external potentials (electric fields, etc)



The (electronic) Many Body Problem
H Y, ({}) = EQR, ) ¥, ({13)

2
H=-—"YV+V{r,R
e 2m62 I ({ I I})

Numerical Solutions of the Electronic ‘Many-Body’ Problem:

A\ A A 4

» Quantum Monte Carlo (stochastic solutions)  E& TurboRVB

» Quantum Chemistry Methods (approximations on the wave
function that can be systematically improved)

 Density Functional Theory (approximations to the exact
Exchange-Correlation potential) - The one that provides highest
computational speed, whereas retaining a very good accuracy in
general.



Program

1. Density Functional Theory

* Density Functional Theory — The basics



What is Density Functional Theory?

Taken fron Stefaan Cottenier; https://www.youtube.com/watch?v=jZi2EOrCrpY



What is Density Functional Theory?

Delusion

Factory

(>

Taken fron Stefaan Cottenier; https://www.youtube.com/watch?v=jZi2EOrCrpY




What is Density Functional Theory?

HU(Fy, ....7N) = BU(F, ..., 7n)

many-body Schrédinger equation

U (7, ..., FN)

many—body wavefunction

The Density

Delusion Functional

XC?

Factory Theory

[p(?) - charge density ]

o

/9
e
\‘E,_/

Adapted fron Stefaan Cottenier; https://www.youtube.com/watch?v=jZi2EOrCrpY

His ¢ (7) = E¢(F)

single-particle Kohn-Sham equations




[ The Electron Density: n(r) ]

1 electron wave function:

() — n@r)= [PmI?

N electron wave function:

Y(ry, 19, ., my) — n(r) =N [[Y(r, 1y, ..., ry)|%dry ... dry

See the difference in the complexity of wf and n

Y is a function of 3N variables
n is a function of 3 variables



Wave functions and Density

H,y({r})=E{R, D y({r})

“+V({r,R +E,
He= T + Vext + Vint + EII
I
R® ol
[ ] rz

Vo =2 U(101y) i 1(r)

Ground state wf Ground state electron density



Wave functions and Density

Total Energy (for a given vy):

L = <lp|[:1|lp> - <ﬂ> = <f> + <‘A/inl> +/d3rvext(r)n(r) + E;
(W)
| H |
The Ground State Energy: Ec =min E = min <1/J 1/J>
Y Y <w|w>
I
SEN

Vo =2 U(101y) i 1(r)

Ground state wf Ground state electron density



Wave functions and Density

Total Energy (for a given vy):

E = il = (H) = (T) + (Vi) + / &r Ve (r)n(r) + Ey
(W|W)

Forces: Hellmann-Feynman Theorem
0E 0 Vex 0E
—/d3r'11(r) (r)  dEy;

Fy =

“9R, IR, IR,
Iy
o R,
R, ®
[ ]
I

Ve =2 Y(1.1;) —eep (1)

Ground state wf Ground state electron density



Hohenberg — Kohn Theorems
(PRB, 1964)

Theorem 1: For any system of electrons in an external potential V(r), that potential is
determined uniquely (within an additive constant) by the ground state density n(r)

As a result, the full many body wave function and derived properties are also determined
uniquely by n(r). But we don’t know how fo compute it, but trough the MB Wave Function!

Theorem 2: A universal functional of the density F[n(r)] can be defined for all
electronic systems. The global minumum of E[n] =f2(t)n (t)dr+F[»(x)] fora
given external potential v(r) = V¢ gives the exact ground state energy and density

A

(T) + (Vint)

V,, = Y(L1,) > 7T
—



[ Functionals ]

A function maps numbers into numbers

f R Rz f(-’lf) Wave functions: Function R3N +— C

A functional maps functions into numbers

F:F—>C:f— Fl[f]

F[f]1= f(0) Energy: Functional F — R

FIf1= [ fx)dx ol



Hohenberg — Kohn Theorems
(PRB, 1964)

Theorem 1: For any system of electrons in an external potential V(r), that potential is
determined uniquely (within an additive constant) by the ground state density n(r)

As a result, the full many body wave function and derived properties are also determined
uniquely by n(r). But we don’t know how fo compute it, but trough the MB Wave Function!

Theorem 2: A universal functional of the energy F[n(r)] can be defined for all
electronic systems. The global minumum of E[n] =f2(t)n (t)dr+F[»(x)] fora
given external potential v(r) = V¢ gives the exact ground state energy and density

The EXACT form of the functional F[n] is unknown and must be very complicated

F[n] can give only the ground state; excited states require more work... but the
information is there!

Vg =2 9(r.5;) ——> n(r)
—



Kohn — Sham formulation
(PRB, 1965)

1. KS Ansatz: The exact ground state density of the interacting
system can be represented by the ground state density of
an auxiliary system of non-interacting particles.

occ ‘2

n(r) = |, (r)

2. The non-interacting system is chosen to have the usual 1e
Kinetic energy operator, plus an effective /ocalpotential V_4r)
acting on an electron at point r

H =—1V2+V (r)

eff 2 eff

( See later for the connection of V4 with the functional E[n] )



Kohn — Sham formulation
(PRB, 1965)

occ

n(r) = E

y, (0|

The effective potential

1

2
H g = _EV +V 5 (r) =

1
= —EVZ + Vext(l’)+ VH(I’) + ch(r)

Hartree potential Exchange-Correlation potential

3.0 N(r')
VH(l’)=fd r ‘r_r' ch(r)=vxc[n]

( See later)




Kohn — Sham formulation
(PRB, 1965)

Interacting electrons: As if non-interacting electrons in an effective
potential (Kohn-Sham Ansatz)

o0 Ho ! ¢ O
NS e .K - . o
/0‘0 \A\.. \. N ~ ()
A _ ~ N occ N 2
hy,(7) =&y, () n(F) = Yy, (F)
1_.
Heff - _EV +Veff(r) -

E

1
— _EVZ +V_(N+V, (N+V (r)

FEEF 4



Kohn — Sham formulation
(PRB, 1965)

Self-consistency

PROBLEM: The potential (input)
depends on the density (output)

n. >V » N > N

n Q out

| nn _nn—l |> &




Kohn — Sham formulation
(PRB, 1965)

The Energy Functional:  Eys[n]

Exs = I;[n] + / drVex((r)n(r) + Exarecn] + Ef7 + Exc|n].

The effective potential: V.«(r)

VG ( ) Vv ( ) 8EHartree 8Exc
) = Vext(I) |
B : Sn(r,o) dn(r,o)

o ext(r) > i VHartree(r) : on(r;(r)




What can be computed with DFT?

* The GS density n(r)
* The Ground State energy E. = E <

7.74

Ge

Equations of state (both for T=0 and finite T)

Deviation from equilibrium: harmonic and 779
anharmonic =2 phonon; thermal conductivity, ...

Forces = Equilibrium geometries and energies

Energy(Ry/atom)

Molecular dynamics: How do the atoms move in
different external conditions = chemical
reactions, ....

-7.84

And many others...

diamond

-7.89 : : .
0.45 055 065 075 0.85 0.985 105

Normalized volume

FIG. 1. Crystal energies versus vo]um§ normalized by the
calculated equilibrium volume of 22.5616 A’ for the cubic dia-
mond phase in Ge.



What can be computed with DFT?
Perturbation Theory

Vewt = VO 4 AV 4+ 220 3) 4

2n + 1 Theorem(Gonze and Vigneron, 89)

Knowledge of Kohn-Sham wavefunctions up to order n is adequate to
yield Kohn-Sham energy up to order (2 n + 1).

Yi = 9+ 2 + NP 4
Ec —» ES) + \EY) + X2EQ + ...
{Q/)(I"'n) }=_> Egn-l—l)

E.g: unperturbed wf (t/)i(o)) allow us to compute forces (%)
d’E d3E

E.g: first order wf (1/)i(1)) allow us to compute phonons and beyond (ﬁ,ﬁ

Adapted fron Umesh Waghmare; http://nanohub.org/resources/9683/supportingdocs



What can be computed with DFT?
Perturbation Theory

n=0: Ground state Kohn-Sham solution

2 n +1 =1: All first derivatives of EG can be obtained from the
ground state y’s.
Example: 1. Hellman-Feynman forces on atoms (deriv. wrt atomic position)
2. Stress on the crystal (deriv. wrt strain)
3. Magnetization (deriv. wrt magnetic field)
4. Electric polarization (deriv. wrt electric field)

n=1: Kohn-Sham DFT Linear Response

2 n +1 = 3: All second and third derivatives can be obtained from the
first order (linear response) y’s.

Examples: 1. Force constant matrices
2. Elastic constants
3. Dielectric constant
4. All the mixed second derivatives like piezoelectric const.

5. Raman tensor (third deriv. wrt atomic position, E, E).

(Hks-€) w;! = (Hys'-g") @

Taken fron Umesh Waghmare; http://nanohub.org/resources/9683/supportingdocs



What can be computed with DFT?

Second derivative of E,, or F wrt Physical property
d;, d; (atomic displacement) Force spring const: phonons
E, E (E-field) Dielectric constant

g, € (strain) Elastic constant

E, e Piezo-electric constant

E, d Born Dynamical charge
g, d Strain-phonon coupling
H, H (magnetic field) Magnetic susceptibility
E,H Magneto-electric constant
H, € Piezo-magnetic constant

T# 0 : E,, — tools of statistical mechanics — free energy F

Taken fron Umesh Waghmare; http://nanohub.org/resources/9683/supportingdocs
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1. Density Functional Theory

* Density Functional Theory — In practice

* Functionals
*  Numerical Methods
« Codes



DFT iIn practice — overcoming the jargon

The electronic structure calculations are performed within
the DFT framework using the projector augmented wave
(PAW) approach for the core-valence interaction and
the Perdew-Burke-Ernzerhof (PBE) approximation for the
exchange-correlation functional as implemented in the VASP
code.’”° The kinetic energy cutoff is set at 500 eV and
special k-point sets of 8 x 8 x 8,4 x4 x4, and 4 x4 x 4
k-points are used for static self-consistent calculations in the
cl11, p222, and the SQS cells, respectively. For the SQS
cells a smaller 2 x 2 x 2 k-point set is used during relaxation.
To optimize the geometry, a conjugate gradient algorithm 1is
applied. Both ion positions and cell parameters are optimized
simultaneously.

Taken fron Stefaan Cottenier; https://www.youtube.com/watch?v=jZi2EOrCrpY



A short guide to understand DFT

1. Which is the XC Functional?

2. What are the numerical methods used
to solve the one-electron Kohn-Sham
equations?

3. What code has been used?



1. Which XC Functional?

The Local Density Approximation - LDA
Already proposed by Kohn-Sham

Assume that E,.[n] is a sum of contributions from each point in real space,
depending only on the density of that point, independent of the others

E _[n]= f dr n(r)e_(n(r))

§EMPA Oesc (p(r)) B
vioA (r) = = exe (p(r)) + p(r) — il ’
5p(r) 9p(r) \ l '/
Taken from the homogeneous electron gas I |
(exact results available from Monte Carlo and oy |
analytic Many Body calculations) g
D. M. Ceperley and B. J. Alder (Phys. Rev. Lett. 1980) @ 0
LDA functional: 00 PG00 000

J. Perdew and A. Zunger (Phys. Rev. B, 1981) % o)



1. Which XC Functional?

The Local Density Approximation - LDA

where the electronic density #(r) is relatively slowly
varying, so that our approximation (2.3) for e is ex-
pected to be satisfactory as discussed in case (a) above.
(3) The “surface” of atoms and the overlap regions in
molecules. Here our approximation (2.3) has no
validity and therefore we expect this region to be the
main source of error. We do not expect an accurate de-
scription of chemical binding. In large atoms, of course,
this “surface” region becomes of less importance. (The
surface is more satisfactorily handled in the nonlocal
method described under B below.)

For metals, alloys, and small-gap insulators we have,

Kohn — Sham, Phys. Rev. 1965




1. Which XC Functional?

The Generalized Gradients Approximation - GGA

Assume that E,.[n] is a sum of contributions from each point in real
space, depending only on the density and its gradients at that point,
independend of the others

E_[n]-= f dr n(r)e_(n(r),vn(r))

Many GGA functionals (PW91, PBE, BLYP, PB86, PBEsol...)

J. P. Perdew, K. Burke, M. Ernzerhof, "Generalized Gradient Approximation Made Simple," Phys.
Rev. Lett. 77, 3865-3868 (1996).

Better cohesion and dissociation energies than LDA, to the point that the
errors are acceptable for many purposes in Chemistry and Materials
Science



1. Which XC Functional?

LDA GGA

Lattice Constants 1% , -3% +1%
Bulk Modulus +10, +40% -20%, +10%

Cohesive Energy +15% -5%

Eyap -50% -50%

LDA: crude approximation but sometimes is accurate enough (structural properties, ...).

GGA: Better cohesion energies; usually tends to overcompensate LDA results,
not always better than LDA.



1. Which XC Functional?

Usual problems with the common functionals (LDA, GGA):

* Problems describing weak interactions (Van der Waals)

(solution: new non-local functionals)

* Problems describing strongly correlated systems

(solution: methods to include better exchange and correlations)

 Excited electronic states: DFT is a ground state technique
solution: methods beyond DFT to compute electronic excitations

Many Body Perturbation Diagrammatic techniques: ‘GW’ for
quasiparticles; Bethe-Salpeter for optical excitations, ... Yam‘ba



1. Which XC Functional?

Beyond LDA & GGA - "Jacob's Ladder"

Mardirossian & He~

Phys. Chem. > o @@@ .0, 9904

> |

*@

W
\ 0

Q
g

DFT functionals for van der Waals interactions
(depend on density at two points)

DFT becomes widely used (much more
than Quantum Chemistry methods)

W. Kohn gets the Nobel prize in
Chemistry (1998)



1. Which XC Functional? - A word of caution

DFT provides the right ground state density and
energy, nothing else.

The one-electron eigenvalues and eigenvectors have
no physical meaning; they are just a mathematical
step to construct the density.

They should not be interpreted as physically sound
quantities! (Beware!! — very often they are...)



1. Which XC Functional? - A word of caution

» Eigenvalues ¢, do not have a rigourous physical meaning. They
are not the excitation (quasiparticle) energies (although there

are some theorems

 In practice, g are good approximantions to the excitation

energies, but band gaps are too small
----LDA

.-

Thecretical gap (oV)

~

=
o

O LDA
L RS

Experdmental gap (oV)

Energy (eV)

Exp




A short guide to understand DFT

2. What are the numerical methods used
to solve the one-electron Kohn-Sham
equations?



2. The Numerical Methods
—
N occ N ~ 1
n(F) =Yy, )| h==—V"+ [V ylnl

NG /

hy,(F) =&y, (F)

N second order differential equations
Non-linear
Orthogonality condition on



2. The Numerical Methods

1. How many electros do we consider?

Courtesy of E. Artacho

* All electrons in the atoms present
Si: 14 electrons 1s?, 2s?, 2p®,  3s?, 3p?

* Only the valence electrons
Si: 4 electrons:  3s?, 3p?



2. The Numerical Methods

1. How many electros do we consider?

3p (-4.18) —
Fy /
> 3S $-10.83§
—>2pD (-95.63
2s (-139.08)
S
o
>
o
:CJ) r (bohr)
Core electrons...
highly localized
1s (-1773.77)
very deep energy

... are chemically inert



2. The Numerical Methods

1. How many electros do we consider?

* All electron calculations (APW, LMTO...)

* Pseudopotentials calculations
(and related, like PAW)



2. The Numerical Methods

1. How many electros do we consider?

Pseudopotentials:

- Substitute the all-electron potential and the
nuclear attraction by an effective (I-dependent)
dependent potential potential, inside r.

- Impose that { is unchanged beyond r.

- Impose that € for the valence electrons does not
change

lonic potential (eV)




2. The Numerical Methods

2. Discretizing the problem: What basis set?

We discretize the differential equation problem by expanding the wave
functions in a basis set:

Solve the SELF-CONSISTENT one electron problem: Building H and
obtaining the eigenstates by linear algebra:.

he-lvisy
2

N

(N+Vy (N+Vye (p(r) — Ay = <¢ﬂ

ext

N

SCF —c Q
h,uvcn,u o gn S,uv Cn,u

LGEDIAGL




A short guide to understand DFT

3. What code has been used?



3. The Codes

2. What basis set do is used?
3. What code to use?

The choice of functions @ will determine what method/code we will
be using (each code is tied to a specific choice of basis set!):

* Gaussian type orbitals (GTOs): Gaussian, Gamess, ...

Atomic-like orbitals: LCAO -

Molecular orbitals: LCMO

Plane waves: _VASP,-
Augmented ilane waves: -,WIENZk

Woavelets




A bit clearer now??

The electronic structure calculations are performed within
the DFT framework using the projector augmented wave
(PAW) approach for the core-valence interaction and
the Perdew-Burke-Ernzerhof (PBE) approximation for the
exchange-correlation functional as implemented in the VASP
code.’”° The kinetic energy cutoff is set at 500 eV and
special k-point sets of 8 x 8 x 8,4 x4 x4, and 4 x4 x 4
k-points are used for static self-consistent calculations in the
cl11, p222, and the SQS cells, respectively. For the SQS
cells a smaller 2 x 2 x 2 k-point set is used during relaxation.
To optimize the geometry, a conjugate gradient algorithm 1is
applied. Both ion positions and cell parameters are optimized
simultaneously.

Taken fron Stefaan Cottenier; https://www.youtube.com/watch?v=jZi2EOrCrpY



Thank you!

Questions? pablo.ordejon@icn2.cat



