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Computational Materials Science



Why Computer Simulation?
The advantages of Simulations  (the “virtual lab”)

• Basic understanding
• Focus on specific details
• Systems and conditions not feasible in experiments
• Specify external conditions

These give us:
• Predictive power
• Aid in the interpretation of experiments

Further advantages:
• Solve complex (i.e., realistic) models without approximations
• Scales up with the available computer power
• Developing simulation methods allows us to understand the physics 



Materials Simulations
An example of industrial interest: 

Industrial project with Air Products
Machado, Kaczmarski, Ordejón, Garg, Norman and Cheng,  Langmuir 21, 7608 (2005)

Chemicals for the CVD deposition of Cu for electrodes in microelectronic circuits

CupraSelect®

Problems of adhesion when deposited over Ta films

US Patent 7985449 



Materials Simulations
Ingredients of a Simulation

2. A simulation algorithm: the 
numerical solution to the 
equations that describe the 
model.

1. A model of the interactions
between the “blocks” that build 
the material.
Here:  atomistic models.

3. A set of tools for the analysis of 
the results of the simulation.

Simulation in materials: Study the way in which the “blocks” that build
the material interact with one another and with the environment, and
determine the internal structure, the dynamic processes and the
response to external factors (pressure, temperature, radiation, etc…).



The "model of the interactions" and 
the "equations of motion":
Going to First Principles  (or ab-initio)

• What are materials made of?
Nuclei and electrons

• Which are the fundamental laws that describe the 
behaviour of nuclei and electrons in materials?

Electromagnetic forces
Quantum Mechanics
Special Relativity



Going to First Principles  (or ab-initio)
“The general theory of quantum mechanics is now almost 
complete.  The underlying physical laws necessary for the 
mathematical theory of a large part of physics and the 
whole of chemistry are thus completely known, and the 
difficulty is only that the exact application of these laws 
leads to equations much too complicated to be soluble.”

Paul Dirac, Proc. Roy. Soc. (London) A123, 714 (1929).

“It therefore becomes desirable that 
approximate practical methods of 
applying quantum mechanics should be 
developed, which can lead to an 
explanation of the main features of 
complex atomic systems without too 
much computation.”



Why care about electrons and Quantum 
Mechanics?

Let's just consider atoms as classical objects, model their
interactions using classical potentials and use Newton's
classical laws to describe their motion

Empirical potentials
Force Fields
Classical Molecular Dynamics
.... System-dependent

Limited generality
Need fitting to data from
experimental or higher-level theory
Overfitting – extrapolating
Limited flexibility of predefined
functional forms

Extremely easy equations (Newton)
Easy to implement in computer codes
Low computational cost



Example: The AMBER Force Field
A classical, empirical Force Field very popular in biology



Why take that extra work?

Fron Umesh Waghmare; http://nanohub.org/resources/9683/supportingdocs

+ information about 
the electrons, 
their dynamics, 
excitations, etc



But... computational cost!

(Warning!!: Old slide!!  Now sizes affordable are significantly larger  ...  x10 at least)



But... computational cost!

Scaling or "complexity" of a simulation method:

T µ O(N)   in the best (simplest) cases  (linear scaling)
empirical potentials (but not always)

T µ O(N3) DFT and similar methods
(Matrix diagonalisation and inversion)     (Some schemes towards O(N))

T µ eN some models and systems
(Quantum chemistry; multiple minima problems, etc)

The relation between computing time T (CPU) and the number of degrees of 
freedom N (number of atomic coordinates, electrons, length…)



Critics of computer simulation
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• The problem:  To obtain the energies and forces on the atomic nuclei by 
solving the quantum mechanical problem.

• Mathematically: Solve Schrödinger’s eq.:
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The ab-initio approach

Coulomb interactions



ĤΨ({ri,R I}) = EΨ({ri,R I})

The ab-initio approach

How do we simplify to make computations feasible?  (remember Dirac’s comment)



The Kinetic Energy

The smaller the mass, the larger the quantum delocalization effect:
A quantum particle in a parabolic well in its ground state

!
!

!
"

!
!

! "
# ∇−=

!

m1 ¦ ¥ >>>>         m2 >             m3

(Classical limit)
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The Born-Oppenheimer Approx.
Saparating the Electronic and Ionic degrees of freedom:

• Born-Oppenheimer approximation: decouple the ionic and electronic
degrees of freedom

• Retains the quantum description of both electrons and ions. Assumes that
mass of ions is much larger than mass of electrons

• Classical ions approximation:  Ions are treated classically, because of
their large mass; electrons are treated quantum mechanically.

• Ionic dynamics – Atomic forces and Newton’s law

Ψ({ri,R I}) ≈ψ{RI }
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The (electronic) Many Body Problem

Vext(r) may include also other external potentials (electric fields, etc)
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The (electronic) Many Body Problem

Numerical Solutions of the Electronic ‘Many-Body’ Problem:

• Quantum Monte Carlo (stochastic solutions)
• Quantum Chemistry Methods (approximations on the wave 

function that can be systematically improved)
• Density Functional Theory (approximations to the exact 

Exchange-Correlation potential) - The one that provides highest 
computational speed, whereas retaining a very good accuracy in 
general.
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What is Density Functional Theory?

Taken fron Stefaan Cottenier; https://www.youtube.com/watch?v=jZi2EOrCrpY



What is Density Functional Theory?

Taken fron Stefaan Cottenier; https://www.youtube.com/watch?v=jZi2EOrCrpY



What is Density Functional Theory?

Adapted fron Stefaan Cottenier; https://www.youtube.com/watch?v=jZi2EOrCrpY

many—body wavefunction

𝜌(𝑟)    - charge density

XC?



[ The Electron Density:  n(r) ]

1 electron wave function:    

ψ 𝑟 ⟶ 𝑛 𝑟 = 𝜓(𝑟) !

N electron wave function: 

ψ 𝑟", 𝑟!, … , 𝑟# ⟶ 𝑛 𝑟 = 𝑁∫ 𝜓(𝑟, 𝑟!, … , 𝑟#) !𝑑𝑟! … 𝑑𝑟#

See the difference in the complexity of wf and n  

ψ is a function of 3N variables
n is a function of 3 variables



Wave functions and Density

Ĥeψ {ri}( ) = E({R I})ψ {ri}( )

He =       T    +    Vext +   Vint +   EII
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Wave functions and Density

Total Energy (for a given y):

The Ground State Energy: EG =min
ψ

E =min
ψ

ψ | Ĥ |ψ

ψ |ψ
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Wave functions and Density

Total Energy (for a given y):

Forces: Hellmann-Feynman Theorem

Vext

r1

r2
R1

R2

Ground state wf

ψ r1,r2( )o

r

Ground state electron density

n r( )o



Hohenberg – Kohn Theorems 
(PRB, 1964)

Vext

Theorem 1: For any system of electrons in an external potential Vext(r), that potential is
determined uniquely (within an additive constant) by the ground state density n(r)

As a result, the full many body wave function and derived properties are also determined
uniquely by n(r).   But we don't know how to compute it, but trough the MB Wave Function!

Theorem 2: A universal functional of the density F[n(r)] can be defined for all
electronic systems. The global minumum of E[n] =                                       for a 
given external potential = Vext gives the exact ground state energy and density

ψ r1,r2( )o
n r( )o



[ Functionals ]

A function maps numbers into numbers

f (x) = sin(x)

A functional maps functions into numbers

F[ f ]= f (0)

F[ f ]= f (x)dx
−∞

∞

∫

Wave functions:   Function ℝ3N ⟼ ℂ

ψ 𝑟!, 𝑟", … , 𝑟#

Energy:   Functional          ⟼ ℝ

F [n(𝑟)]



Hohenberg – Kohn Theorems 
(PRB, 1964)

n r( )ψ r1,r2( )Vext

The EXACT form of the functional F[n] is unknown and must be very complicated

F[n] can give only the ground state; excited states require more work… but the 
information is there!

Theorem 1: For any system of electrons in an external potential Vext(r), that potential is
determined uniquely (within an additive constant) by the ground state density n(r)

As a result, the full many body wave function and derived properties are also determined
uniquely by n(r).   But we don't know how to compute it, but trough the MB Wave Function!

Theorem 2: A universal functional of the energy F[n(r)] can be defined for all
electronic systems. The global minumum of E[n] =                                       for a 
given external potential = Vext gives the exact ground state energy and density



Kohn – Sham formulation 
(PRB, 1965)

1. KS Ansatz: The exact ground state density of the interacting 
system can be represented by the ground state density of 
an auxiliary system of non-interacting particles.

n(r ) = ψi (r )
2

i

occ
∑

( See later for the connection of Veff with the functional E[n] )

Heff = −
1
2∇

2 +Veff (r )

2. The non-interacting system is chosen to have the usual 1e 
kinetic energy operator, plus an effective local potential Veff(r) 
acting on an electron at point r 



Kohn – Sham formulation 
(PRB, 1965)

The effective potential

n(r ) = ψi (r )
2
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∑
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2 +Vext (r )+VH (r ) +Vxc (r )

VH (r) = d 3∫ r ' n(r ')
r − r '

Hartree potential Exchange-Correlation potential

Vxc (r) =Vxc [n]
( See later)



Kohn – Sham formulation 
(PRB, 1965)

!"!"# !!" ###
!! ψεψ =

Interacting electrons: As if non-interacting electrons in an effective 
potential (Kohn-Sham Ansatz)
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Kohn – Sham formulation 
(PRB, 1965)

Self-consistency

!"" V ! !"#$

>− − !! "!! !!

PROBLEM: The potential (input) 

depends on the density (output)



Kohn – Sham formulation 
(PRB, 1965)

The Energy Functional:     EKS[n]

The effective potential:   Veff(r)



What can be computed with DFT?

• Equations of state  (both for T=0 and finite T)
• Deviation from equilibrium:  harmonic and 

anharmonic à phonon; thermal conductivity, …
• Forces à Equilibrium geometries and energies 
• Molecular dynamics:  How do the atoms move in 

different external conditions à chemical 
reactions, ....

• And many others...

• The GS density n(r)
• The Ground State energy EG = EKS



What can be computed with DFT?
Perturbation Theory

Adapted fron Umesh Waghmare; http://nanohub.org/resources/9683/supportingdocs

E.g:			unperturbed	wf (𝜓!
(#))	allow	us	to	compute	forces	(%&

%'
)

E.g:			first	order	wf (𝜓!
(())	allow	us	to	compute	phonons	and	beyond	(%

!&
%'!

, %
"&
%'"

)



What can be computed with DFT?
Perturbation Theory

Taken fron Umesh Waghmare; http://nanohub.org/resources/9683/supportingdocs



What can be computed with DFT?

Taken fron Umesh Waghmare; http://nanohub.org/resources/9683/supportingdocs
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DFT in practice – overcoming the jargon 

Taken fron Stefaan Cottenier; https://www.youtube.com/watch?v=jZi2EOrCrpY



A short guide to understand DFT 

1. Which is the XC Functional?

2. What are the numerical methods used 
to solve the one-electron Kohn-Sham 
equations?

3. What code has been used?



1. Which XC Functional?

The Local Density Approximation  - LDA
Already proposed by Kohn-Sham

Taken from the homogeneous electron gas 
(exact results available from Monte Carlo and 
analytic Many Body calculations)

Assume that Exc[n] is a sum of contributions from each point in real space, 
depending only on the density of that point, independent of the others

E
xc
[n] = dr∫ n(r)ε

xc
(n(r))

LDA functional:



The Local Density Approximation  - LDA

Kohn – Sham, Phys. Rev. 1965

1. Which XC Functional?



The Generalized Gradients Approximation - GGA

Better cohesion and dissociation energies than LDA, to the point that the 
errors are acceptable for many purposes in Chemistry and Materials 
Science 

Assume that Exc[n] is a sum of contributions from each point in real 
space, depending only on the density and its gradients at that point, 
independend of the others

Exc [n] = dr∫ n(r)εxc (n(r),∇n(r))

1. Which XC Functional?

Many GGA functionals  (PW91, PBE, BLYP, PB86, PBEsol…)



LDA GGA

Lattice Constants -1% , -3% +1%

Bulk Modulus +10, +40% -20%, +10%

Cohesive Energy +15% -5%

Egap -50% -50%

LDA: crude approximation but sometimes is accurate enough (structural properties, …).

GGA:  Better cohesion energies;  usually tends to overcompensate LDA results, 
not always better than LDA. 

1. Which XC Functional?



Usual problems with the common functionals (LDA, GGA):

• Problems describing weak interactions (Van der Waals)

(solution: new non-local functionals)

• Problems describing strongly correlated systems

(solution: methods to include better exchange and correlations)

• Excited electronic states: DFT is a ground state technique

solution: methods beyond DFT to compute electronic excitations   

Many Body Perturbation Diagrammatic techniques: ‘GW’ for 
quasiparticles;  Bethe-Salpeter for optical excitations, ...   

1. Which XC Functional?



Beyond LDA & GGA - "Jacob's Ladder"

DFT becomes widely used (much more 
than Quantum Chemistry methods)

W. Kohn gets the Nobel prize in 
Chemistry (1998)

DFT functionals for van der Waals interactions 
(depend on density at two points)

Mardirossian & Head-Gordon
Phys. Chem. Chem. Phys., 2014, 16, 9904

1. Which XC Functional?



DFT provides the right ground state density and 
energy, nothing else.

The one-electron eigenvalues and eigenvectors have 
no physical meaning; they are just a mathematical 
step to construct the density. 

They should not be interpreted as physically sound 
quantities!    (Beware!! – very often they are…)

1. Which XC Functional? - A word of caution



• Eigenvalues εi do not have a rigourous physical meaning. They
are not the excitation (quasiparticle) energies (although there
are some theorems

• In practice, εi are good approximantions to the excitation
energies, but band gaps are too small

LDA
GW Exp

1. Which XC Functional? - A word of caution



A short guide to understand DFT 

1. Which is the XC Functional?

2. What are the numerical methods used 
to solve the one-electron Kohn-Sham 
equations?

3. What code has been used?



2. The Numerical Methods

!"!"# !!" ###
!! ψεψ =
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ˆ h = − 1
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∇2 + Veff [n]
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N second order differential equations
Non-linear

Orthogonality condition on ψ



2. The Numerical Methods

1. How many electros do we consider?

• All electrons in the atoms present
Si: 14 electrons   1s2,  2s2, 2p6,     3s2, 3p2

• Only the valence electrons
Si: 4 electrons:     3s2, 3p2

Courtesy of E. Artacho



2. The Numerical Methods

1. How many electros do we consider?

Core electrons…
highly localized

very deep energy

… are chemically inert



2. The Numerical Methods

1. How many electros do we consider?

• All electron calculations (APW, LMTO...)

• Pseudopotentials calculations
(and related, like PAW)   



2. The Numerical Methods

1. How many electros do we consider?

Pseudopotentials:

- Substitute the all-electron potential and the 
nuclear attraction by an effective (l-dependent) 
dependent potential potential, inside rc

- Impose that ψ is unchanged beyond rc

- Impose that ε for the valence electrons does not 
change



2. The Numerical Methods

2. Discretizing the problem: What basis set?
We discretize the differential equation problem by expanding the wave 
functions in a basis set:

ψn (
!r )= cnµφµ (

!r )
µ

∑

Solve the SELF-CONSISTENT one electron problem: Building H and 
obtaining the eigenstates by linear algebra:

  

€ 

ρ(! r ) = |ψn (
! r )

n
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∑ |2

νµµν φφ !! !! =

SCF
µµνµµν ε !!! "#"$ !! =

€ 

ˆ h = − 1
2
∇2 + Vext (r)+VH (r)+VXC (ρ(r))



A short guide to understand DFT 

1. Which is the XC Functional?

2. What are the numerical methods used 
to solve the one-electron Kohn-Sham 
equations?

3. What code has been used?



3. The Codes

2. What basis set do is used?
3. What code to use?
The choice of functions φ will determine what method/code we will 
be using   (each code is tied to a specific choice of basis set!):

• Gaussian type orbitals (GTOs):   Gaussian, Gamess, …
• Atomic-like orbitals:  LCAO – SIESTA
• Molecular orbitals: LCMO
• Plane waves:  Quantum Espresso, VASP,  Abinit
• Augmented plane waves:    FLEUR, WIEN2k
• Wavelets: BigDFT

Some Open-source, free codes



A bit clearer now??

Taken fron Stefaan Cottenier; https://www.youtube.com/watch?v=jZi2EOrCrpY



Thank you!

Questions? pablo.ordejon@icn2.cat

  


