Parallelization issues

Georg Huhs

June 15, 2014

1 Introduction

Not too many years ago overclocking CPUs and estimating the clock frequencies
of the next processor generation were the hot topics in the world of gamers
and other computer fans. Computing power rose with the frequencies, while
transistors became smaller and smaller, so that more of them fit on a single
chip, fulfilling the famous law of Moore. But at a certain point it was, amongst
other problems, not possible to dissipate the heat from the areas of intense
computing, causing a stagnation of the clock frequencies in the early 2000s.

Instead, for increasing the computing power further, manufacturers started to
put several computational cores into one processor. Two 3GHz cores are not as
fast as one 6GHz processor, but definitely faster than just one, and technically
feasible, as well as 4, 6, or even more cores as in modern PCs. While powerful
but expensive supercomputers have always been parallel computers, parallelism
is a necessity even when using workstations, if we don’t want to get stuck at the
level of the early 2000s.

The advantage of parallel structures is their scalability. But for utilizing the
full computational potential, also the software has to be adopted to the paral-
lel computing approach. And sometimes simple parallelization is not enough.
Serial data dependencies can make a parallelization impossible. In such a case
the only way out is to exchange the algorithm completely.

Here we don’t bother about the programming side, but also on the user’s side
some understanding of the basic concepts helps a lot for using parallel systems
efficiently.

10,000,000
Dual-Core Itanium 2
1,000,000

Intel CPU Trends -

(sources: Intel, Wikipedia, K. Olukotun}

100,000
Pentium 4 /
L o]

10,000

-/

1,000

100

A
? = -
'./. ~ . @ Clock Speed (MHz)
e ee b aPower (W)
@ Perf/Clock (ILP)

0 |
1970 1975 1980 1985 1990 1995 2000 2005 2010

Figure 1: Development of processor performance over time [1]. The clock
rates (dark blue) stopped increasing in the early 2000s, but the transistor
count (green) continued growing due to the use of multicore architectures, thus
Moore’s law is still obeyed.

2 Basics

There are different ways of using several computing units in parallel which differ
mainly in their access to memory and interconnection, as depicted in figure 2.

Shared memory Up to now we talked about several “cores” in a single socket
(“multicore”). They communicate with each other basically over the com-
mon, thus “shared”, memory, and the parallel execution paths are called
“threads”. This is a very simple approach with short communication ways
and little hardware effort, widely used in workstations. It is possible to
run more than one thread per core, but since all cores need to fit into a
single socket, their number is limited. It is possible to fit several sockets
into one “node”. But as there are usually not more than 4 sockets per
node, a more general concept is needed for a computer of arbitrary size.

Distributed memory The execution paths are called “processes”, each one with
its own memory, not visible to the others, communicating via messages.
In terms of hardware this means, that we have many processing units on
many sockets with some interconnection. Often cheap and easily available
standard hardware like Intel multicore processors is used. This means
there are several cores per socket. Even if they could share the memory,
it is possible to distribute it logically, so that each core has access to its

@E
@H
@H
@&
@F
@ H
@&

(a) Shared memory (b) Distributed memory

il s

(c) Combining shared memory nodes with a network connec-
tion.

s

.

(d) Layout like in (c), with each node hosting a massively par-
allel coprocessor with its own memory.

Figure 2: Various types of parallel hardware. The meaning of the sym-
bols is: P...Processor, $...Cache, Mem...Memory, NI...Network Interconnect,
A. . .accelerator, and yellow stripes are buses/networks.

share only. On many machines this leaves not more than 2 GB per core,
often not enough for a large application. In this case it is possible to
reserve several cores for one process, of which only one will be used for
computations.

Hybrid systems If we would like to have the option to share memory and
having a scalable system at the same time, we need a so called hybrid
approach. In this case a process runs on a group of cores that share their
memory using threads, while the processes work like in a distributed mem-
ory environment. The maximum number of cores per process is limited
by the hardware (size of a node), but an arbitrary number of nodes can
be put together.

Coprocessors These are specialized computing devices exploiting massive par-

allelism. The best known example are Graphics Processing Units (GPUs).
They are located on an extra card, connected to a “host”, which is a stan-
dard multicore processor. Each accelerator has its own memory, so data
needs to be transferred from and to the host, forming a considerable bot-
tleneck.
GPUs have an extremely high computational throughput. The maximum
performance of the AMD Radeon R9 295X2 is 11.5 TFlop, which equals
the performance of top supercomputers only 10 years ago. But due to
their special architecture only suitable algorithms with a specialized im-
plementation can use this potential. A more general approach is given by
Intel’s MIC architecture, which resembles more a multicore processor, but
with 60 computational cores, giving it the name “many-core.

Future systems In the moment the world of supercomputing is becoming even
more diverse. Some of the emerging technologies are:

e The next generation of Intel MICs will not need hosts any more,
simplifying the whole system significantly.

e The main challenge for the next big computers is energy efficiency.
Several projects tackle this by using energy saving chips of mobile
devices combined with GPUs.

For running a scientific application on a supercomputer the computing centers
provide the platform and the code owners provide high performance versions
of the programs, trying to let the scientists do their work dealing with the
infrastructure as little as possible. But a few things remain:

Machine level The user has to define how he would like to use the machine.
Big computers usually feature a queuing system, which needs at least the
information about how many processors shall be used, and an upper limit
for the execution time. With this data the execution is scheduled and the
user has to wait for it to start, and hopefully end well.

In many cases working out the characteristics of the hard- and software
rewards the user with a more efficient use of the system. For example
running a multithreaded program on 160 cores of a computer with 16

cores per node, the user has to choose if he wants to run on 10 processes,
each with 16 threads, or 160 processes with one thread each. It is also
possible, that multithreading allows using more cores, for example in this
case using 160 processes with 4 threads might bring down the time to
solution considerably, while using 640 single-threaded processes would not.

Application level Ideally the application does not need to be told anything
about how it should use the available resources. But usually tuning
parallelization-related program parameters can improve the performance,
and sometimes they even have to be provided.

An example is the PEXSI solver [2], which requires the user to define a
number of processor-groups and the amount of processors in the groups,
resulting in a set of possible (meaningful) allocations.

Higher specialized or optimized code gives better performance, but also requires
more effort to use it efficiently. The same applies to hardware, for example only
an algorithm intrinsically featuring massive parallelism, working on a problem
with sufficient data to process, can take advantage of a GPU.

3 Siesta in parallel

Siesta features, for now, only distributed memory parallelism in several ways:

e Since the computations on distinct k-points are independent of each other,
they can be distributed easily. The resulting parallelization is very effi-
cient, but limited by the number of k-points. It is activated by the fdf
option ParallelOverkK.

e A more general approach is distributing orbitals and spacial grid-points,
which is done when using the diagon and orderN solvers. This allows
using an arbitrary number of processors, but practically it does not make
sense to go beyond a problem-dependent amount of cores.

e The PEXSI solver features two levels of parallelism: The higher level is a
very efficient distribution of the independent ”poles“. The computations
for each pole themselves are also parallelized. The number of poles is
related to the desired accuracy, while memory needs and scalability set
limits for the number of processors per pole.

For building and running Siesta in parallel a suitable environment has to be
provided:

MPI is a basic “message passing” communication layer for shared memory ar-
chitectures and includes basic libraries, compiler wrappers, and an MPI
execution binary. Due to its wide distribution it is a quasi-standard for
distributed memory architectures.

BLACS builds on top of MPI a layer of communication routines specialized for
linear algebra operations.

SCALAPACK is the parallel version of LAPACK, using MPI and BLACS for par-
allel tasks, as well as BLAS and LAPACK for (serial) operations within a
process.

MPI, BLACS, SCALAPACK, ... are standards only defining interfaces and
functionalities. For each of these libraries there are several implementations,
often provided by vendors, optimized for their hardware. One measure to get
the best performance possible is to link with optimized vendor’s libraries like
MKL for Intel based computers.

BLACS | LAPACK

V

Figure 3: Software stack for a parallel Siesta installation.

3.1 Building parallel Siesta

Building Siesta in parallel is configured in the arch.make file, where a parallel
compiler and some libraries have to be defined. The configuration for MareNos-
trum, the supercomputer in Barcelona, is given in Listing 1.

The option BSC_CELLXC activates improvements in the construction of the Hamil-
tionan, in particular when using many processors, but is not compatible with
some other features, like the VAW functional.

MPI wrappers to compiler
FC=mpif90

Flags activating MPI and advanced timing also for MPI calls
FPPFLAGS= -DMPI -DMPI_TIMING -DFC_HAVE_FLUSH -DFC_HAVE_ABORT
eventually also -DBSC_CELLXC

Parallel linar algebra libraries, in this case the MKL implementation
BLACS_LIBS=-Wl,-rpath,/apps/INTEL/mkl/1lib/intel64/ <

< -L/apps/INTEL/mkl/1ib/intel64/ -1mkl_blacs_openmpi_lp64
SCALAPACK_LIBS=-Wl,-rpath,/apps/INTEL/mkl/1lib/intel64/ <

<~ -L/apps/INTEL/mkl/1ib/intel64/ -1lmkl_scalapack_lp64 <

< -1mkl_intel_1p64 -1lmkl_core -1lmkl_sequential
LIBS = $(SCALAPACK_LIBS) $(BLACS_LIBS) -lstdc++

#SIESTA needs an F90 interface to MPI

#Thts will give you SIESTA’s own implementation

#If your compiler wvendor offers an alternative, you may change
#to it here.

MPI_INTERFACE=1libmpi_£90.a

MPI_INCLUDE=.

Listing 1: Relevant lines in arch.make for compiling Siesta on MareNostrum.

3.2 Running Siesta in Parallel

For running an application in parallel the system has to be told which resources
to use. This is done by calling the application indirectly, for example by mpirun:

mpirun -n 16 siesta < example.fdf

If a queuing system is used, this can’t be called directly, but by a launch script,
where essential parameters and the call to execute are defined. One example
for the LSF system, as used on MareNostrum:

#! /bin/bash

#BSUB -J Stiesta

#BSUB -cwd ./

#BSUB -n 16

#BSUB -oo std.out

#BSUB -eo std.err

#BSUB -R"span[ptile=16]"
#BSUB -W 00:20

mpirun siesta < SiOO01+H2.fdf

Listing 2: launch.sh - Script for running a parallel job on MareNostrum

This job is put into the queue by calling

bsub < launch.sh

Further there are commands for checking the status of a job, deleting it, ...
They can be obtained from the documentation of the system one is using.

4 Scaling

Parallelizing a program involves introducing communication and synchroniza-
tion, so that time is wasted for waiting for results. The more processors are
used for a fixed problem, the more communication is needed while the portions
of computation become smaller and smaller. At a certain point, increasing the
number of processors does not decrease the time to solution any more. Fig-
ure 4a demonstrates this for an example featuring 122 orbitals, which can be
distributed well to up to 16 processors, while using more processors yields an
increase in time.

The time to solution is important for the end user, but does not tell us directly
how well a parallelization works. The ratio between the times of the serial and
parallel execution is called speedup, and can be compared to the ideal value,
which equals the number of processors (using twice as many processors should
give half the time). This is demonstrated in figure 4b.

Comparing the achieved speedup with the ideal one we get the efficiency of the
parallelization, depicted in figure 4c. While the speedup graph still shows some
scaling up to 16 processors, the efficiency constantly degrades. When applying
for computation time at an HPC facility, it is important to show that one can
use the resources efficiently.

Time (s)
i

measured X
ideal

Iteration

Processors Processors

(a) Time (b) Speedup

«
_“measured —=

measured —*
s ideal

deal

CPU-seconds)

Efficiency (%)
/

12 4 8 16 24 32 12 4 8 16 24 32
Processors Processors

(c) Efficiency (d) Cost

Figure 4: Analysis of the execution of the Si000-H2 molecular dynamics example
with various numbers of processors, based on the average time per SCF iteration.

Allocations on supercomputers are usually granted in CPU-hours, which corre-
sponds to the total cost of a computation in terms of time X number of cores.
As figure 4d reveals, using 8 or 32 processors gives approximately the same
solution time, but the cost increases by a factor of 5.

How well an application scales on a certain hardware depends on the algorithms,
their implementation, and the physical problem. If there is more data to process,
the work can be distributed more easily, allowing using more processors. With
growing problem size, solving the KS eigenproblem takes over most of the time.
The effort for this part scales cubically with the number of orbitals, so it is not
feasible to solve systems beyond a certain extend. Only profound changes on
the algorithmic level can find a remedy. One example is the recently developed
PEXSI solver, which reduces the computational complexity and allows the usage
of tens of thousands of processors. The price to pay is, that it needs some
configuration from the user, and, as figure 6 shows, it is faster than the standard
approach only beyond a certain system size. The figure also demonstrates, that
for large systems the advantage reaches orders of magnitude, a high gain for
just spending a little time on studying the options.

limits

system size
(matrix size)

Iimitsl determine

number of
processors

Figure 5: The relations between system size, number of processors, and time
to solution. For a certain problem size the number of processors that can be
used efficiently is limited. These two parameters define the time needed for
the computation. Unfortunately the computational effort scales cubically with
the number of orbitals, so increasing the system’s dimensions or basis quickly
leads to unfeasible effort. Or, seen the other way around, a given allocation or
maximum time sets a limit to the system size. A very helpful tool for estimating
the effort for a calculation can be found on http://departments.icmab.es/
leem/siesta/siestimator/siestimator.php

Standard SIESTA
range covering
all examples

SIESTA-PEXSI /
—e— Hzo < 2
w0 ——CBN /
—=—DNA /
y ®

10 4

1000

Total cost (CPU-hours)

0,1

'110600 ' ' o '1'00'000
N[= Number of orbitals]

Figure 6: Cost for solving several systems depending on the number of orbitals
N (“Weak Scaling”). (Taken from [2].) The solution time with standard Siesta
using diagonalization depends almost on N only, while for PEXSI the sparsity
of the system and its dimensionality determine the effort. Water is a 3D system,
featuring O(N?) scaling, C-BN is two-dimensional (O(N?3/2) scaling), and DNA
shows as 1D system linear scaling. The diagram demonstrates the favorable
weak scaling of PEXSI and the crossover-points with diagonalization, which
correspond to system sizes of a few thousands of atoms.

http://departments.icmab.es/leem/siesta/siestimator/siestimator.php
http://departments.icmab.es/leem/siesta/siestimator/siestimator.php

5 Access to computing facilities

Relatively cheap standard components and solutions make parallel comput-
ers acquirable with a moderate budget, so that many universities or enter-
prises host such small clusters. Bigger machines are usually located at spe-
cial centers like the Barcelona Supercomputing Center (BSC), which is also
the head of the Spanish supercomputing network RES (http://www.res.es/).
On the European level there is a supercomputing initiative called PRACE
(http://www.prace-ri.eu). These organizations offer access to the computers
they manage in regular calls. For applying one has to explain the scientific
content as well as need and the means to use HPC resources. In particular for
the PRACE calls one should ask for at least a few thousands of cores, and also
the scaling of the code has to be demonstrated. For this purpose PRACE offers
two types of projects:

Preparatory Access for optimizing codes and doing scaling analysis in order
to prepare for a large project.

Project Access for compute-intensive applications with mature software.

Successful applications get a certain amount of CPU-time at a specific machine
(or several ones) granted. Then using these facilities is free of charge.

References

[1] E. Artacho, E. Anglada, O. Dieguez, J. D. Gale, A. Garcia, J. Junquera,
R. M. Martin, P. Ordején, J. M. Pruneda, D. Sanchez-Portal, and J. M.
Soler. The siesta method; developments and applicability. J. Phys.: Con-
dens. Matter, 20, 2008.

[2] L. Lin, A. Garcia, G. Huhs, and C Yang. SIESTA-PEXSI: Massively paral-
lel method for efficient and accurate ab initio materials simulation without
matrix diagonalization. Accepted in J. Phys.: Condens. Matter.

[3] J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon,
and D. Sédnchez-Portal. The SIESTA method for ab initio order-N materials
simulation. J. Phys.: Condens. Matter, 14:2745-2779, 2002.

[4] H Sutter. The free lunch is over: A fundamental turn toward concurrency
in software. http://www.gotw.ca/publications/concurrency-ddj.htm.

10

http://www.res.es/
http://www.prace-ri.eu
http://www.gotw.ca/publications/concurrency-ddj.htm

	Introduction
	Basics
	Siesta in parallel
	Building parallel Siesta
	Running Siesta in Parallel

	Scaling
	Access to computing facilities

