
Solvers: diagonalization, OMM,

PEXSI, CheSS. Parallelization issues.

Solvers: diagonalization, OMM,
PEXSI, CheSS.

Calculating the density kernel

A typical SCF cycle in DFT codes looks as follows:

1 calculate

Hamiltonian matrix Hαβ = 〈φα|H|φβ〉
overlap matrix Sαβ = 〈φα|φβ〉

2 calculate the density kernel K out of H and S

3 calculate

energy E = Tr(KH)
electronic density ρ(r) =

∑
α,β φ

∗
α(r)Kαβφβ(r)

4 update the Hamiltonian operator H according to the new electronic
density ρ

5 start over again

Limiting factor in most calculations (in particular big ones) with SIESTA:
Calculation of the density matrix

Stephan Mohr — Solvers: diagonalization, OMM, PEXSI, CheSS. Parallelization issues.

Available solvers

SIESTA offers various solvers to calculate the density kernel:

Diagonalization (various flavors)

Orbital minimization method (OMM)

PEXSI

CheSS

The choice of the most suited method depends on the specific
calculation:

system size

sparsity of the matrices

HOMO-LUMO gap

used basis set

etc.

Stephan Mohr — Solvers: diagonalization, OMM, PEXSI, CheSS. Parallelization issues.

Diagonalization

Most straightforward approach to calculate the density kernel:

1 solve the generalized eigenvalue problem Hci = εiSci

2 calculate the density kernel as K =
∑

i cicTi

Advantages:

exact calculation without any approximations

universally applicable

there exist highly optimized libraries

Shortcomings:

possible sparsity of the matrices cannot be exploited

cubic scaling with system size

hard to parallelize

Stephan Mohr — Solvers: diagonalization, OMM, PEXSI, CheSS. Parallelization issues.

Various flavors for the diagonalization

There are various libraries to diagonalize a matrix:
ScaLAPACK: parallel version of LAPACK

most popular library for dense general purpose linear algebra
various diagonalization algorithms:

PDSYEV: based on tridiagonal QR iteration
PDSYEVD: based on Divide and Conquer algorithm
PDSYEVX: based on Bisection and Inverse Iteration
PDSYEVR: based on the parallel MRRR algorithm

often limited in parallel performance

ELPA
better performance than ScaLAPACK using the same API

MAGMA (Matrix Algebra on GPU and Multicore Architectures)
linear algebra library for heterogeneous architectures (CPU, Xeon
Phi, GPU)
Has interfaces to LAPACK and ScaLAPACK routines, so easy to port

In SIESTA:

ScaLAPACK (various flavors)

ELPA

Stephan Mohr — Solvers: diagonalization, OMM, PEXSI, CheSS. Parallelization issues.

Orbital minimization method

Find n = N/2 Wannier functions describing the occupied subspace by
direct unconstrained minimization

The original OMM functional [F. Mauri et al., Phys. Rev. B 47,
9973 (1993); P. Ordejón et al., Phys. Rev. B 48, 14646 (1993)]:

Ẽ = 2Tr{[I + (I− S)]H}, with Sij = 〈ψi |ψj〉 ,Hij = 〈ψi |H|ψj〉

For orthonormal set (S = I): Ẽ = E = Tr(H)

For all other cases: Ẽ ≥ E if H is negative definite (easily fulfilled by
shift)

Unconstrained (i.e. no explicit
orthogonalization) global minimum of the
function Ẽ coincides with E

Stephan Mohr — Solvers: diagonalization, OMM, PEXSI, CheSS. Parallelization issues.

Orbital minimization method – results

OMM has the potential to be a O(N) method, even if the version
implemented in SIESTA is not (no localization constraints).

Still an interesting alternative to diagonalization
At each SCF iteration, the results from the previous one can be
reused as starting guess
Especially towards the end of the SCF cycle potentially faster than
diagonalization

Stephan Mohr — Solvers: diagonalization, OMM, PEXSI, CheSS. Parallelization issues.

Fermi expansion methods

The density matrix can be calculated directly from the Hamiltonian:

K = f (H), with f (ε) =
1

1 + eβ(ε−µ)

All we need is a computationally convenient representation of the Fermi
function f .

Two possibilities:

rational expansion: PEXSI

Chebyshev expansion: CheSS

Stephan Mohr — Solvers: diagonalization, OMM, PEXSI, CheSS. Parallelization issues.

PEXSI

Approximate the Fermi function using a pole expansion in the complex
plane:

f (ε) ≈ Im

np∑
l=1

wl

ε− (zl + µ)

K ≈ Im

np∑
l=1

wl

H− (zl + µ)S

Advantages:

Only a small number of poles is required (typically about 40)

Each pole independent

Most important task: Inversion of the matrices H− (zl + µ)S
=⇒ done with the Selected Inversion algorithm

Stephan Mohr — Solvers: diagonalization, OMM, PEXSI, CheSS. Parallelization issues.

PEXSI

PEXSI only calculates those elements of the density matrix which
are required to calculate physical quantities (charge density, energy,
forces, ...)

Thus PEXSI can exploit the sparsity of the matrices (consequence of
the localized character of the basis set {φα})

Exact method (no approximations!), but reduced scaling.
For sufficiently big problems:

1-dimensional: O(N)

2-dimensional: O(N3/2)

3-dimensional: O(N2)

Number of poles depends on the inverse electronic
temperature β and the spectral width ∆E .

However fast convergence with the number of poles
=⇒ still applicable to metals!

Stephan Mohr — Solvers: diagonalization, OMM, PEXSI, CheSS. Parallelization issues.

PEXSI – Scaling

PEXSI exhibits ideal parallel scaling with respect to the poles:

40 processors per pole × 40 poles:
160 processors

Test systems:

1D: DNA (up to 17875 atoms)

2D: C−BN (up to 12770 atoms)

3D: H2O (up to 24000 atoms)

Stephan Mohr — Solvers: diagonalization, OMM, PEXSI, CheSS. Parallelization issues.

PEXSI – Scaling

Fitted slopes:

DNA: 1.3 ; C−BN: 1.7 ; H2O:
2.2

Deviations from perfect scaling:
Due to parallelization issues

Prefactor: “sparsity” of the
system

For large systems always faster
than diagonalization

Stephan Mohr — Solvers: diagonalization, OMM, PEXSI, CheSS. Parallelization issues.

O(N) schemes

The key for O(N) schemes is locality: “nearsightedness” principle
(W. Kohn, Phys. Rev. Lett. 76, 3168 (1996))

Example: Density matrix F (r, r′) =
∑

i fiψi (r)ψi (r′)

The matrix elements F (r, r′) decay
rapidly with |r − r′|:

insulators and metals at finite
temperature: exponentially

metals at zero temperature:
algebraically

-40

-20

0

20

40

-40 -20 0 20 40
x
'
(b

o
h

r)
x (bohr)

10
-8

10
-7

10
-6

10
-5

10
-4

The decay length depends on the HOMO-LUMO gap of the system.
O(N) schemes thus work best for insulators.

Stephan Mohr — Solvers: diagonalization, OMM, PEXSI, CheSS. Parallelization issues.

O(N) schemes

Basic idea: Localization

Confine the orbitals within a
sphere with cutoff Rc .

Equivalent: Enforce the density
matrix F to be sparse.

Justified by the nearsightedness.

O(N) usually have a larger prefactor
than classical O(N3) calculations
⇒ crossover point

Stephan Mohr — Solvers: diagonalization, OMM, PEXSI, CheSS. Parallelization issues.

CheSS

Basic idea: Approximate the density matrix by a polynomial expansion:

Use Chebyshev polynomials to avoid instabilities

Shift and scale H such that eigenvalues lie in the range [−1, 1] (H̄)

Calculate the density matrix as

K = f (H) ≈ c0
2

I +

npl∑
i=1

ciT
i (H̄)

Efficient and flexible approach:

The coefficients ci can be cheaply calculated using textbook formulas
(also for other expansions than the density matrix, e.g. the inverse)

The Chebyshev polynomials fulfill the following recursion relation:

T0(H̄) = I ; T1(H̄) = H̄ ; Tj+1(H̄) = 2H̄Tj(H̄)− Tj−1(H̄).

From this we see:

Only matrix vector multiplications required, easily parallelizable

O(N) method by restricting the multiplications to a sparsity pattern

Stephan Mohr — Solvers: diagonalization, OMM, PEXSI, CheSS. Parallelization issues.

CheSS

The performance of CheSS only depends on
the number of non-zero entries of the
matrices

 0

 20

 40

 60

 80

 100

 120

 5x10
6

 1x10
7

 1.5x10
7

 2x10
7

ru
n

ti
m

e
 (

s
e

c
o

n
d

s
)

number of non-zero elements in the original matrix

matrix size 6000
matrix size 12000
matrix size 18000
matrix size 24000
matrix size 30000
matrix size 36000

The algorithm works best for matrices with a small eigenvalue spectrum:

 1

 10

 100

 1000

 10 100 1000
 10

 100

 1000

 10000

ru
n
ti
m

e
 (

s
e
c
o
n
d
s
)

p
o
ly

n
o
m

ia
l
d
e
g
re

e

condition number

runtime "bounds default"
runtime "bounds adjusted"

npl "bounds default"
npl "bounds adjusted"

 0

 50

 100

 150

 200

 0.001 0.01 0.1 1
 0

 500

 1000

 1500

 2000

 2500

 3000

ru
n

ti
m

e
 (

s
e

c
o

n
d

s
)

p
o

ly
n

o
m

ia
l
d

e
g

re
e

HOMO-LUMO gap (eV)
runtime, εmax-εmin=50.0 eV

runtime, εmax-εmin=100.0 eV
runtime, εmax-εmin=150.0 eV

npl, εmax-εmin=50.0 eV
npl, εmax-εmin=100.0 eV
npl, εmax-εmin=150.0 eV

Stephan Mohr — Solvers: diagonalization, OMM, PEXSI, CheSS. Parallelization issues.

CheSS

CheSS shows a very good parallel scaling (for
both MPI and OpenMP)

 0

 5

 10

 15

 20

 25

 30

 35

 500 1000 1500 2000 2500

s
p

e
e

d
u

p
 w

it
h

 r
e

s
p

e
c
t

to
 8

0
 c

o
re

s

number of cores

matrix size 12000
matrix size 24000
matrix size 36000

ideal

For hybrid MPI/OpenMP setup, CheSS can outperform PEXSI for
appropriate systems (small eigenvalue spectrum, non-zero HOMO-LUMO
gap)

 10

 100

 1000

 50 100 150 200

ru
n
ti
m

e
 (

s
e
c
o
n
d
s
)

spectral width (eV)

matrix size 6000
 sparsity S: 97.95 %
 sparsity H: 92.97 %
 sparsity K: 88.45 %

CheSS

 10

 100

 1000

 50 100 150 200

spectral width (eV)

matrix size 12000
 sparsity S: 98.93 %
 sparsity H: 96.25 %
 sparsity K: 93.73 %

PEXSI

 10

 100

 1000

 50 100 150 200

spectral width (eV)

matrix size 18000
 sparsity S: 99.27 %
 sparsity H: 97.42 %
 sparsity K: 95.65 %

 10

 100

 1000

 50 100 150 200

spectral width (eV)

matrix size 24000
 sparsity S: 99.45 %
 sparsity H: 98.03 %
 sparsity K: 96.66 %

 10

 100

 1000

 50 100 150 200

spectral width (eV)

matrix size 30000
 sparsity S: 99.56 %
 sparsity H: 98.40 %
 sparsity K: 97.28 %

Stephan Mohr — Solvers: diagonalization, OMM, PEXSI, CheSS. Parallelization issues.

CheSS

SIESTA has been interfaced with CheSS (not yet in the official version).

Very simple test system:
alkane chain, DZP basis

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1000 2000 3000 4000 5000 6000

to
ta

l
w

a
llt

im
e
 (

s
e
c
o
n
d
s
)

number of atoms

FOE
DIAG

linear fit
cubic fit

Most important remaining bottleneck: Reduce the spectral width of the
SIESTA matrices (sort of contracted basis set?)

Stephan Mohr — Solvers: diagonalization, OMM, PEXSI, CheSS. Parallelization issues.

ELSI

The ELSI project (ELectronic Structure
Infrastructure) is an effort to unite various of the
aforementioned solvers:

ELPA

OMM

PEXSI

CheSS

Ultimate goal:

Provide one single interface to all these libraries

A DFT code interfacing ELSI gets access to all these methods

Easy case-by-case choice of the solver

Stephan Mohr — Solvers: diagonalization, OMM, PEXSI, CheSS. Parallelization issues.

Parallelization issues

Need for parallelization

Clock speed of of a single
core saturates since about
2005

Performance gain only
possible by using more cores
at the same time

Applications must be highly
parallelized

Stephan Mohr — Solvers: diagonalization, OMM, PEXSI, CheSS. Parallelization issues.

Types of parallelism

shared memory

distributed
memory

hybrid distributed/shared memory

accelerators

Stephan Mohr — Solvers: diagonalization, OMM, PEXSI, CheSS. Parallelization issues.

Characteristics of the parallelization schemes

Shared memory:

done using OpenMP

can often be added relatively easily on top of existing code (but
getting good performance is not that easy!)

limiting factor often memory bandwidth

maximal speedup limited by number of cores per node

Distributed memory:

distributing data is essential for large applications

done using MPI (Message Passing Interface)

introducing MPI often requires a major refacturing of the code

limiting factor is the communication

maximal speedup depends on application and architecture, in
principle no upper bound

Stephan Mohr — Solvers: diagonalization, OMM, PEXSI, CheSS. Parallelization issues.

Characteristics of the parallelization schemes

Hybrid distributed/shared memory:

combination of MPI and OpenMP

most complex form of parallelism, careful implementation required

allows to increase the maximal speedup (multiplicative)

allows to overcome the aforementioned constraints and limitation
(e.g. memory, bandwidth, etc.)

Accelerators:

often used to accelerate specific intensive parts of the code

most popular ones: GPUs and MICs

can be combined with other parallelization schemes

maximal speedup limited by accelerator

usually hard work to get good performance

Stephan Mohr — Solvers: diagonalization, OMM, PEXSI, CheSS. Parallelization issues.

Parallelization in SIESTA

Parallel resources can be exploited by SIESTA in various ways:

various levels of distributed memory parallelization using MPI:

k-point parallelism
Distributing orbitals and gridpoints

recently shared memory using OpenMP was added

parallelization of the various external solver:

BLAS: OpenMP
ScaLAPACK: MPI and OpenMP
PEXSI: heavy two-level MPI parallelization, limited OpenMP
parallelization
CheSS: efficient MPI and OpenMP parallelization

Stephan Mohr — Solvers: diagonalization, OMM, PEXSI, CheSS. Parallelization issues.

Parallel compilation

Compile options:

MPI wrappers to compiler

FC=mpif90

Compile with OpenMP

FFLAGS= -fopenmp

Flag activating MPI

FPPFLAGS= -DMPI

Parallel linar algebra libraries

LIBS = <your_scalapack_lib> <your_blacs_lib>

additional external libraries

LIBS += <your_chess_lib>

additional preprocessor flags

FPPFLAGS += -DSIESTA CHESS

MPI INTERFACE=libmpi f90.a

MPI INCLUDE=.

Stephan Mohr — Solvers: diagonalization, OMM, PEXSI, CheSS. Parallelization issues.

Parallel execution

Execution on local workstation:

mpirun -n 8 siesta < example.fdf

Execution on cluster

Submit script (e.g. submit.sh)

#!/bin/bash

#BSUB -J Siesta

#BSUB -n 16

#BSUB -oo output %J.out

#BSUB -eo output %J.err

#BSUB -R "span[ptile=16]"

#BSUB -W 00:20

<load required modules>

mpirun siesta < example.fdf

Submission on cluster

bsub < submit.sh

Stephan Mohr — Solvers: diagonalization, OMM, PEXSI, CheSS. Parallelization issues.

Parallel scaling: Time and speedup

Using more cores does NOT always make a calculation faster (e.g.
communication overhead)!

Careful estimation of the parallel resources is requested.

Stephan Mohr — Solvers: diagonalization, OMM, PEXSI, CheSS. Parallelization issues.

Parallel scaling: Efficiency and cost

Choosing a bad parallelization scheme strongly affects the efficiency and
cost:

To get a rough estimate of the parallel performance, see also

http://departments.icmab.es/leem/siesta/siestimator/siestimator.php

Stephan Mohr — Solvers: diagonalization, OMM, PEXSI, CheSS. Parallelization issues.

http://departments.icmab.es/leem/siesta/siestimator/siestimator.php

Access to parallel computers

1 Clusters at universities, research institutes, companies, ...

2 National networks
e.g. in Spain: RES http://www.res.es/

3 European networks
e.g. PRACE: http://www.prace-ri.eu

“Preparatory access” for testing, benchmarks, etc.
“Project access for” production runs

RES and PRACE:

Regular calls

Significance of project and scalability of software

Grants certain amount of CPU-hours (free of charge)

Stephan Mohr — Solvers: diagonalization, OMM, PEXSI, CheSS. Parallelization issues.

http://www.res.es/
http://www.prace-ri.eu

Thank you for your attention!

