First-principles calculations: Exploration and understanding

Alberto García
Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC)

EXCELENCIA SEVERO OCHOA

- Scientific method: experiment, modelization, prediction, experiment, model refinement...
- We have the "ultimate model" for materials, and it involves the use of computers.
- What do the calculations teach us? How can we use them well?

Basic idea: Vibrations around an equilibrium point

Parameters can be fitted to experiment

Refinement of the model: polarizable electrons (shell model)

Internal structure of the atom acknowledged

Better fit
to experiment
New phenomena

Electrons are the glue
holding solids together

We know the basic equations:
Quantum Mechanics and Electromagnetism

The "ultimate model" for electrons in a material

$$
H=\sum_{i}\left[-\frac{\hbar^{2} \Delta_{i}}{2 m_{e}}+\sum_{I} \frac{-e^{2}}{4 \pi \epsilon_{0}} \frac{Z_{I}}{\left|\mathbf{r}_{i}-\mathrm{R}_{I}\right|}\right]+\frac{1}{2} \sum_{i \neq j} \frac{e^{2}}{4 \pi \epsilon_{0}} \frac{1}{\left|\mathrm{r}_{i}-\mathrm{r}_{j}\right|}
$$

$$
\hat{H} \Psi=E \Psi \quad \Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{n}\right)
$$

We could compute "everything"

Simulation of reality

Meteorology:
 We know the basic equations

> Astrophysics:
> We know the basic equations.

> Little data

lattice potential

Density-functional theory $\quad E=E[n] \quad n(\mathbf{r})$

$$
\begin{gathered}
\left\{-\nabla^{2}+V_{\mathrm{eff}}[n](\mathbf{r})\right\} \psi_{i}=\varepsilon_{i} \psi_{i} \quad \text { One electron eqs. } \\
V_{\mathrm{eff}}[n](\mathbf{r})=V_{\mathrm{ext}}(\mathbf{r})+V_{\mathrm{H}}[n](\mathbf{r})+V_{\mathrm{xc}}[n](\mathbf{r})
\end{gathered}
$$

Internal electrons do not participate in the chemical bond

Effective potential for valence electrons
Pseudopotential

Density-functional theory is a practical implementation of the "ultimate model" for atomic aggregates

Reasonably accurate
Versatile

Dozens of codes available

Siesta, Espresso, Abinit, Fleur, Vasp, BigDFT, FHI-Aims, Wien2k, CP2K, Dmol, ADF, Castep, OpenMX,

Output of the program

- Energy, forces, and stress for a given geometry
- Charge density, wave functions, band energies, and other low-level technical information

* Calculation without Classic Standards is Dangerous.

A Computer is Incapable of Setting its own Standards.

* By its Emphasis on Application of the Already Known, Computing can
 Delay Basic Discovery and thus Reduce the Field of Applications in the Future.
* Classic Theories used Inductive and Deductive Models. Computing Encourages Floating Models.
(Headings from the essay: "The Computer: Ruin of Science and Threat to Mankind", by Clifford Truesdell, in "An Idiot's Fugitive Guide to Science", Springer, 1984)

A simple model can shed more light on Nature's workings than a series of "ab-initio" calculations of individual cases, which, even if correct, are so detailed that they hide reality instead of revealing it. ... A perfect computation simply reproduces Nature, it does not explain it.

Uses in materials science

- Exploration and prediction, simulating experiments difficult or impossible in the laboratory.
- Clarification/complement of experimental information by means of the precise control of simulation conditions. (The computer is a perfect control machine)
- Design of materials with desired properties. Reduction of the "trial and error" loop.
- Parametrization of simpler models

Calculation of electronic charge density (Simulation of an X-ray experiment)

Synthetic diffraction diagram

High-pressure experiment

Diamond-anvil cell

Sample

Theoretical treatment

$$
E=E(V), \quad p=-\frac{d E}{d V}, \quad p=p(V)
$$

Equations of State
Phase transitions

Post-perovskite phase of MgSiO 3 Oganov et al, Nature (2004)

Prediction of BN nanotubes

Rubio, Corkill, Cohen, PRB (1994)

Proposal for a super-hard material Liu, Cohen, Science (1989)

Surfaces

First work on $\mathrm{Si}(100)$ Yin, Cohen, PRB (1981)

Oxidation of NiAl
Kresse et al, Science (2005)

Exp

Theory

Clarification of the structure and prediction of a new surface phase of ZnSe

Garcia, Northrup, APL (1994)

Precise control of simulation conditions

Point defects:

Great experimental complexity

In a calculation they can be "prepared" (isolated or in complexes) and their energies of formation and bonding computed

Help in the analysis of experiments, and direct testing of hypothesis

Mechanism for p-doping saturation in ZnSe

450%
${ }^{3} \quad$ Nb-rich $\quad x=0.5-\nu$
250%
1 scrich $x=0.5+\nu$
$\mathrm{Pb}\left(\mathrm{Sc}_{x} \mathrm{Nb}_{1-x}\right) \mathrm{O}_{3}$

Design of materials with optimized piezoelectric response

George, Iñiguez, Bellaiche Nature 413, 54 (2001)

What of Anderson's claim?
Do we understand more?

Ionic
valence electrons

Electronegativity difference is enough!

Metallic

Classification involving ionic radii

Simulation as a route for comprehension (I)

It provides more "experimental data" to construct theoretical models Exploration

Can serve to test hypotheses in optimal conditions.

Simulation as a route for comprehension (II)

Low-level
theoretical ingredients
Charge density
Wave functions
Energy

High-level physical concepts

Electronegativity
Bonding
Parametrization of simple models

One can use first-principles methods to compute parameters for simple but relevant and realistic models

Parametrization of a Heisenberg model from the electronic structure.

Relevant for magnetic properties

Ferroelectricity

Cubic
BaTiO_{3}

Orthorhombic

Tetragonal

Rhombohedral

$\begin{array}{rc}+ & \mathrm{Ti} \\ \bigcirc & \mathrm{Ba} \\ -0 & 0\end{array}$ $\overrightarrow{\mathbf{p}}$

Relevant degree of freedom

Model system

Local mode u

Lattice Strain

Basic distortion involved in ferroelectricity (soft mode)

Zhong, Vanderbilt, Rabe, PRL 73, 1861 (1994)

Effective-Hamiltonian parametrized ab-initio
Phase transition sequence obtained from Monte Carlo simulations

(a)

(c)

(b)

(d)

Disociation of $\mathrm{H}_{2} \mathrm{~S}$ in $\mathrm{Fe}(110)$

Jiang, Carter, Surf. Sci (2005)

Kinetic-Monte Carlo method for catalysis -- parametrization

Challenges

Better treatment of electronic correlation, essential to describe localized states in transition metals and rare earths

Hybrid methods to bridge length scales

QM-MM: Precise treatment (QM) of a special part of the system. Rest treated at a lower level of quality.

Matching of atomistic methods with the continuum approximation

Escaping free-energy minima

Phase transition mechanisms, new crystal structures

Metadynamics
(Laio \& Parrinello, 2002; Martonak et al., 2003)

Escaping free-energy minima

Phase transition mechanisms, new crystal structures

Metadynamics
(Laio \& Parrinello, 2002; Martonak et al., 2003)

Escaping free-energy minima

Phase transition mechanisms, new crystal structures

Metadynamics
(Laio \& Parrinello, 2002; Martonak et al., 2003)

Escaping free-energy minima

Phase transition mechanisms, new crystal structures

Metadynamics
(Laio \& Parrinello, 2002; Martonak et al., 2003)

Escaping free-energy minima

Phase transition mechanisms, new crystal structures

Metadynamics
(Laio \& Parrinello, 2002; Martonak et al., 2003)

Escaping free-energy minima

Phase transition mechanisms, new crystal structures

Metadynamics
(Laio \& Parrinello, 2002; Martonak et al., 2003)

Escaping free-energy minima

Phase transition mechanisms, new crystal structures

Metadynamics
(Laio \& Parrinello, 2002; Martonak et al., 2003)

Escaping free-energy minima

Phase transition mechanisms, new crystal structures

Metadynamics
(Laio \& Parrinello, 2002; Martonak et al., 2003)

Escaping free-energy minima

Phase transition mechanisms, new crystal structures

Metadynamics
(Laio \& Parrinello, 2002; Martonak et al., 2003)

The Torii Analogy

(Prof. H. Nakamura)
First-principles calculations

Theory Experiment

Thanks!

Interatomic potentials

$$
\begin{gathered}
U(r)=A e^{-r / \rho}-C r^{-6} \\
U(r)=D\left\{\left[1-e^{-A\left(r-r_{0}\right)^{2}}\right]^{2}-1\right\}
\end{gathered}
$$

The model can get complicated for "pencil and paper" treatment

Molecular dynamics simulation

Alder+Wainwright (1956) Hard-sphere liquid

Tremendous growth

Exploration, validation of theories, and checks of interaction potentials

Ising Model

Emergent properties:
Not evident just by looking at the equations

The use of the computer is essential for exploration of models

Basic idea: Vibrations around an equilibrium point

Parameters can be fitted to experiment

EMPIRICAL POTENTIALS

- large systems
- low transferability
- no electronic structure

TIGHT-BINDING (SEMI-EMPIRICAL)

- transferability depends on the system and on the parametrization
- "reasonable size"
- electronic structure

AB-INITIO

- good transferability
- small systems
- electronic structure

TRANSFERABILITY

