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Most important reference followed in this lecture
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Atomic units

e=m,=h=1
atomic mass unit = m,
atomic length unit = 1 Bohr = 0.5292 Ang

atomic energy unit = 1 Hartree = 27.2 eV
SIESTA energy unit = 1 Ry = 0.5 Hartree = 13.6eV
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Basis sets and secular equation (Gamma point)

ﬁ (U5 ("7) = E;1); (7?)

Expansion of the eigenvectors in a basis of localized atomic orbitals

— Z oEier

Inserting the expansion of the eigenvector into the Kohn-Sham equation

Multiplying by Qﬁ; at the left in both sides and integrating over all space

Zcm/dr ¢ ( Hgbu = Zcm/drqb

Z (Hyp — EiSup) ¢ = 0

7

(7)



Norm-conserving pseudopotentials
In electronic structure calculations

— Pseudo
--= All electron




Numerical atomic orbitals

Numerical solution of the Kohn-Sham Hamiltonian for the
Isolated pseudoatom with the same approximations
(xc,pseudos) as for the condensed system

( 1 d° I+ 1)
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‘Screened pseudopotential ‘

Energy shift
150-50 meV



Example of a first- C function for Si

Si

s orbital




Converging the basis size:
from quick and dirty to highly converged calculations

Single-C (minimal or SZ)

One single radial function per angular

momentum shell occupied in the free—atom

Improving the quality

Radial flexibilization:

Add more than one radial function
within the same angular momentum
than SZ

Multiple-C



Default mechanism to generate multiple- C in SIESTA: “Split-
valence” method

Si

s orbital

And continuous smoothly towards the origin as rt (az — bﬂ“2)

(two parameters: the second-C and its first derivative continuous at r,



Default mechanism to generate multiple- C in SIESTA: “Split-
valence” method

Si

s orbital

The same Hilbert space can be expanded if we use the difference, with the
advantage that now the second-C vanishes at r,, (more efficient)



Default mechanism to generate multiple- C in SIESTA: “Split-
valence” method

Si

s orbital

Finally, the second-C is normalized

r,, controlled with PAO.SplitNorm (typical value 0.15)



Converging the basis size:
from quick and dirty to highly converged calculations

Single-C (minimal or SZ)

One single radial function per angular

momentum shell occupied in the free—atom

Improving the quality

~EelEl fzddlizEion: Angular flexibilization:

Add more than one radial function
within the same angular momentum
than SZ

Multiple-C

Add shells of different atomic
symmetry (different I)

Polarization



How to introduce the basis set in SIESTA

Effort on defining a systematics with minimum parameters

If nothing is specified: default

Basis size: PAO.BasisSize DZP

Range of first-zeta: PAQO.EnergyShift 0.02 Ry =272 meV
Second-zeta: PAO.BasisType Split

Range of second-zeta: PAO.SplitNorm 0.15

Confinement: Hard well

Charge state: Neutrai atom

Reasonably good basis set in terms of accuracy versus efficiency



More global control on the basis with a few input variables: size

and range
Size:
Basis size:
PAO.BasisSize SZ
DZ
SZP
DYAY
Range:
Range of first-zeta: PAQO.EnergyShift 0.02 Ry
Range of second-zeta: PAQO.SplitNorm 0.15

The larger both values, the more confined the basis functions

Also possible to control all parameters related to basis set generation
using more complex input options



Different proposals for the confinement potentials: Shoft-
confinement potential

Available in SIESTA
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J. Junquera et al., Phys. Rev. B 64, 235111 (2001)

Advantages: orbital continuous with all the derivatives continuos
diverges at r_ (orbital exactly vanishes there)

zero at the core region

Pitfall: two new parameters to play with, more exploratory calculations



Using a localized basis set allows reducing the scaling of the
calculation (both computational time and storage)

Basis orbitals

S =100 | 6) = [ di* 6, (7) 61, (7)
Hyw =60 | H|6u) = [ dif 65 (%) He, (7



The one-particle Kohn-Sham hamiltonian
. r "> PS H /- xc (=
H=T+) V., >+ V" (F)+V™(F)
Q
Kinetic energy operator Hartree potential Exchange-correlation potential
rno_ 1 2 —» =/ /0 7?/
e "= [T v =V

Transforming the semilocal pseudopotential form into the fully nonlocal separable

Kleinman-Bylander form .
VPS Vlocal( ) + VKB

Z lgfw NKB

i l ~

Ve (7) — — = VEE = %" Z Z | Xiw) Vim > (X
=0 m=—[ n=1

The standard Kohn-Sham one-electron hamiltonian might be written as

+ Z Vlocal N z VKB + VH ( ) i yxe (,'7)



Electronic charge density =
sum of spherical atomic densities +

deformation charge density (bonding)

p () = p™™ () + op ()

atom —»‘ Z patom —»‘ ¢M (77')

1

Populate basis function with
atom

appropriate valence atomic charges P exactly vanishes beyond r§ — mlax T;z



The local part is screened by the potential
generated by an atomic electron density

patom =/
/d*’ /d*’ +/d
r—r’l |7 —1"]

Neutral atom potential

Vlocal (7,—3) > Zval
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VINA (,':») — VIloca,l (7“) Vatom (—*)
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Potential outside the sphere
vanishes

(Gauss theorem =
generated by the total
charge inside the sphere
= 0 if neutral atom)

= Vo (F) + 6V ()

Vanishes exactly arr,




The hamiltonian computed in SIESTA,
combination of two and three center matrix elements

Two centci integrals Grid integrals
H T—l— VNL VNA( )_|_ 5VH( ) ch (?:»)
(@0 |V (7)] du)
(P |v2|¢“> ¢M( ) M Self-consistent

Basis orbitals

<¢V ‘len len |¢,u

Basis orbitals
Non self-consistent

KB pseudopotential projector
Computed in reciprocal space and tabulated Three-dimensional real space grid



Order-N methods rely heavily on the sparsity
of the Hamiltonian and overlap matrices

1 with 1 and 2

2 with 1,2,3, and 5
3 with 2,3,4, and 5
4 with 3,4 and 5

o with 2,3,4, and 5

Nbasis

Sparse = many entries of the matrix : .
Non-overlap interactions

are zero
Basis orbitals
\
S,yand H,,
are sparse \

KB pseudopotential projector



Two center integrals are calculated In
Fourier space (using radial FFT)

Two center integrals (i. e. the overlap) have a form like

Sia(B) = (W [va) = | dF 0 ()l + )

Y1, %2 might be atomic orbitals, KB projectors or other functions centered on atoms

St = [ 4k w3 BBy

For each pair of functions they are calculated and stored in a fine radial grid (2500 Ry) as a
function of ;, up to the maximum distance RR,,,, = 7| + 15

The value at arbitrary distances can be obtained by accurate cubic spline interpolation (once
obtained, the fine grid does not suppose a penalty in execution time, since interpolation effort is

independent of the number of grid points).



We use real spherical harmonics
for computational efficiency

Yim (6, 0) = CimPI" (cos8) -

(

sin (my) if m <0

s

Normalization factors

0
0

m =—

— | cos

(my) if m >0

\

Associated Legendre polynomials

Pictures courtesy of Victor Luana



The density matrix, a basic ingredient of SIESTA

The electron density is given by
p () —Z?z [ b; (7) | °
i

Occupation of state ;

Inserting the expansion into the definition of the density
p(F) =D _ puwdy (F) ¢y (T)
uv
where, with C;;, = C;l;i , the density matrix is defined

Puv = Z CriTiCiy
i

Control convergence SCF

Restart calculations



“Partial” calculation of the density matrix
and the work on the grid

V(1) = E ¢, 4. (1)

%k
puv = E Ciuciv

1

p(0) = Sl (M) = 3 p s (D2, (1)



Three dimensional grid to compute
Hartree, exchange correlation and neutral atom potentials

O (T)

— Z puv(b; (77) ¢u (7?)

Find all the atomic orbitals that do not vanish at a given grid point

(in practice, interpolate the radial part from numerical tables)
Once the density is known, we compute the potentials EVERYTHING O(N)
p () — V(7
5p (7) = p(7) = Patoms (7))~ 8p (7) = OV ()



The Poisson equation is solved in the
real space grid by FFTs

V2VHE (7)) = —47p (F)

Since the unit cell is periodic (naturally or artificially), we can
expand the density in a Fourier series

p(F) = > p(Q)e“™ = VI (7) = S V(G
G G

—

p(7) == p(G) — VH(G) = V (7)

FFT scales as N log(N)

However is cost is negligible and has no influence on the overall scaling properties.

Multigrid techniques also available, although there are seldom competitive
with FFT. However, they allow treating isolated charged systems exactly.



Three dimensional grid to compute
Hartree, exchange correlation and neutral atom potentials

O (T)

— Z puv(b; (77) ¢u (7?)

Finally, we add together all the grid contributions and perform the integral

V(1) = VI + 6V (F) + Ve (7)

[ 65 (V (#) 6, (7) ~ AGMGTALEY

Volume per grid point



Fineness of the grid controlled by a single parameter,
the “mesh cutoff”

E.,:: maximum kinetic energy of the plane waves that can be
represented in the grid without aliasing

Ax:>kc:i:>Ec
® e o o o Ax

O O O O O h2 kg

- 2m,

—

Ax

In the grid, we represent the density = grid cutoff not directly comparable
with the plane wave cutoff to represent wave functions

(Strictly speaking, the density requires a value four times larger)




Convergence of the results with the mesh cutoff
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The grid breaks traslation symmetry,
the “eggbox” effect

@<+ Grid points

~ Orbital/atom

EL/N\/\ U

Affects more to forces than to energy

Solutions:
- Increase cutoff (computational effort in time and memory)
- “Grid-cell sampling”

- Filter the atomic orbitals [E. Anglada et al. Phys. Rev. B 73, 115122 (2006)]



Once the hamiltonian and the overlap matrices have been
built, we have to solve the Schrodinger equation

s N s N

H |C| - L 2| S ||IC

= nk
- AN J - AN J
N xN N x 1 N xN N x 1
Order-N Order-N3

Minimization of an energy functional Standard diagonalization techniques
Not valid for metals or “dirty” gap systems Both eigenvectors and eigenvalues available

Recent SIESTA versions have available other possibilities:

lterative diagonalization N2xN .

PEXSI algorithm N?
RT-TDDFT

~100 N (# atoms)



If diagonalization, the generalized eigenvalue problem is
solved using standard mathematical libraries

/ N / AV
H |Cc| -E -l S |C
\w /L y, \w _/ y,
N xN N x 1 N xN N x 1
Serial: Parallel:
BLAS BLACS
LAPACK SCALAPACK
ELPA (over orbitals,

Freely available in Gamma point, no SO)

Most machine vendors have their own implementations
available for their own platforms (acml, mkl,...).



The one-particle eigenstates are filled following the
“Aufbau” principle: from lower to higher energies

| n (1) = 37 107 (7)1

Occupation numbers
The ground state has one (or two if spin independent)
in each of the orbitals with the lowest eigenvalues

FEF ]

A smearing of the electronic occupation might be done: |
Fermi-Dirac (OccupationFunction FD)

ElectronicTemperature

Methfessel Paxton (OccupationFunction MP)



The Kohn-Sham equations must be solved self-consistently
The potential (input) depends on the density (output)

Initial guess

n! (), n* (7)

Calculate effective potential

e(;”f (7) = Vewt (7) + VHartreen] + V. [nT’ nl]

Solve the KS equation

1
—5 V2 Vi (7] w7 (7) = <7 (7

l

Compute electron density

n? (7) = 3257 17 (7))

max

Uy

Yes

Output quantities

Self-consistent?

Energy, forces,
stresses ...

(pzl,jt — ,022’;) < DM.Tolerance




Atomic forces and stresses obtained by direct diferentiation
of the energy expression

. OEKS
iy = —
ORy
aEKS
OaB = €qp = Strain tensor
86a5

“One piece of energy = one piece of force and stress”

Calculated as the analytical derivatives of the energy

Pulay corrections, related with the dependency of the basis set on
atomic positions, automatically included

Calculated only in the last self-consistent step



Recap: schematic flowchart of SIESTA

Read and digest input

Solve Schrodinger equation for the isolated atom
(generate the basis set)

Self cons‘i'stent cycles

Compute efficiently [/ s S L
always done in Order-N

Two and three center integrals

I

Solve the secular equation

Order-N (insulators)

Z (Hop — EiSyp) cpi = 0 Order-N3

Compute forces, stresses...




Suplementary information



Two center integrals are calculated
in Fourier space

Two center integrals (i. e. the overlap) have a form like

Sia(B) = (n [0o) = [ dF 5 (7) b7+ B

space
11, V2 might be atomic orbitals, KB projectors or other functions centered on atoms

+00
S12(R) can be seen as a convolution: in 1D [ * g = \/% g(y) f(x—y)dy

Arfken, Mathematical Methods for Physicist, Ch 15.5

Take the Fourier transform of one of the functions
W) = —5 [0 e ar
— 3/ T)eE r
(2)
The Fourier transform of a convolution in real space is a product in reciprocal space

Sio(R) = [ dF ¢ (R)ga(R)e "




Fourier transform of the atomic orbitals

The Fourier transform of a convolution in real space is a product in reciprocal space
> " x (71 " —zlzé
Sia(R) = [ dF v;(E)ea(R)e
The goal now is to compute the Fourier coefficients of the atomic functions

- 1
¢(k) — (277)3/2

Introducing the plane wave expansion in spherical harmonics and operating

—

/ dF o (7) e~

. o%e) [ 5
T =3 N amilyy (kr) Vi, (k) Yim ()

[=0 m=-—I1



The Poisson equation is solved In
the real space grid by FFTs
VAVE () = —dmp ()

Since the unit cell is periodic (naturally or atifically),
we can expand the density in a Fourier series

Zp ZGT:>VH ZvHé iG-7
G

In reciprocal space, the differential Poisson equation is nothing else than a division

VE(G) = —anPG)
|G

Once the coefficients of the potential are known in reciprocal space, Fourier
transform back to real space

p(7) == p(G) — VH(G) =5 V¥ (7)
FFT scales as Nlog(N)

However is cost is negligible and has no influence on the overall scaling properties.

Multigrid techniques (by Oswaldo Diéguez) coming soon



Generalized Gradient Approximation,
the derivative of the charge computed numerically

OESSA p ('), | Vp (7')|]
op (T)

VEEA (p (), |Vp ()] . V20 (7), Vo (7) - V|V (7))

VG (7) =

Density gradient need not be provided, since they are
calculated numerically using the density at the grid points

@ _ Par1 — Pil

ox Lit1 — Li—1

aEGGA
op;

L. C. Balbas et al., Phys. Rev. B 64, 165110 (2001)

= By (p1, 2, - )

A finer grid is required for GGA

Ve 2 (15) =



