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Most important reference followed in this lecture 



Atomic units 



Basis sets and secular equation (Gamma point) 

Inserting the expansion of the eigenvector into the Kohn-Sham equation 

Multiplying by         at the left in both sides and integrating over all space 

Expansion of the eigenvectors in a basis of localized atomic orbitals 



Norm-conserving pseudopotentials  
in electronic structure calculations 



Numerical atomic orbitals 

Numerical solution of the Kohn-Sham Hamiltonian for the 
isolated pseudoatom with the same approximations 

(xc,pseudos) as for the condensed system 

Screened pseudopotential εl +δεl
Energy shift 
150-50 meV 



Example of a first- ζ function for Si 



Converging the basis size: 
from quick and dirty to highly converged calculations 

Single-ζ  (minimal or SZ) 

 One single radial function per angular 

momentum shell occupied in the free–atom 

Improving the quality 

Radial flexibilization:  
Add more than one radial function 

within the same angular momentum 
than SZ 

Multiple-ζ 

 



Default mechanism to generate multiple- ζ in SIESTA: “Split-
valence” method 

And continuous smoothly towards the origin as  

(two parameters: the second-ζ and its first derivative continuous at rm 



Default mechanism to generate multiple- ζ in SIESTA: “Split-
valence” method 

The same Hilbert space can be expanded if we use the difference, with the 
advantage that now the second-ζ vanishes at rm (more efficient) 



Default mechanism to generate multiple- ζ in SIESTA: “Split-
valence” method 

Finally, the second-ζ is normalized 

rm controlled with PAO.SplitNorm (typical value 0.15) 



Converging the basis size: 
from quick and dirty to highly converged calculations 

Single-ζ  (minimal or SZ) 

 One single radial function per angular 

momentum shell occupied in the free–atom 

Improving the quality 

Radial flexibilization:  
Add more than one radial function 

within the same angular momentum 
than SZ 

Multiple-ζ 

 

Angular flexibilization: 
Add shells of different atomic 

symmetry (different l) 

Polarization 



How to introduce the basis set in SIESTA            

Effort on defining a systematics with minimum  parameters 

If nothing is specified: default 

Basis size:   PAO.BasisSize   DZP 

Range of first-zeta:  PAO.EnergyShift                0.02 Ry = 272 meV 

Second-zeta:   PAO.BasisType   Split  

Range of second-zeta:  PAO.SplitNorm   0.15 

Confinement:   Hard well 

Charge state:                    Neutral atom   

Reasonably good basis set in terms of accuracy versus efficiency 



More global control on the basis with a few input variables: size 
and range 

Size: 

Range of first-zeta:  PAO.EnergyShift                0.02 Ry 

Range of second-zeta:  PAO.SplitNorm   0.15 

The larger both values, the more confined the basis functions 

Range:  

Basis size:    

 PAO.BasisSize     SZ 

      DZ 

      SZP 

      DZP 

Also possible to control all parameters related to basis set generation 
using more complex input options  
 



Different proposals for the confinement potentials: Shoft-
confinement potential 

Pitfall:   two new parameters to play with, more exploratory calculations 

Advantages:  orbital continuous with all the derivatives continuos 

  diverges at rc (orbital exactly vanishes there) 

  zero at the core region 

Available in SIESTA 

J. Junquera et al., Phys. Rev. B 64, 235111 (2001) 



Using a localized basis set allows reducing the scaling of the 
calculation (both computational time and storage) 

O(N) number of 
non-zero 
elements 

Basis orbitals 



The one-particle Kohn-Sham hamiltonian 

Transforming the semilocal pseudopotential form into the fully nonlocal separable 
Kleinman-Bylander form 

The standard Kohn-Sham one-electron hamiltonian might be written as 

Kinetic energy operator Exchange-correlation potential Hartree potential 

Long range 



Electronic charge density =  

 sum of spherical atomic densities + 

 deformation charge density (bonding) 

Populate basis function with 
appropriate valence atomic charges          exactly vanishes beyond 



The local part is screened by the potential 
generated by an atomic electron density 

Neutral atom potential Vanishes exactly ar rc 

CORE 

VALENCE 

Potential outside the sphere 
vanishes  

(Gauss theorem ⇒ 
generated by the total  

charge inside the sphere      
= 0 if neutral atom) 



The hamiltonian computed in SIESTA,     
combination of two and three center matrix elements 

KB pseudopotential projector 

Two center integrals 

Computed in reciprocal space and tabulated 

Basis orbitals 

Basis orbitals 
Non self-consistent 

Grid integrals 

Three-dimensional real space grid 

Self-consistent 



KB pseudopotential projector 

Basis orbitals 
Non-overlap interactions 

1 2 
3 

4 

5 
1 with 1 and 2 

2 with 1,2,3, and 5 

3 with 2,3,4, and 5 

4 with 3,4 and 5 

5 with 2,3,4, and 5 

Sµν and Hµν 
are sparse 

Order-N methods rely heavily on the sparsity 
of the Hamiltonian and overlap matrices 

Sparse ≡ many entries of the matrix 
are zero 

1 Nbasis 

Nbasis 

1 



Two center integrals are calculated in 
Fourier space (using radial FFT) 

For each pair of functions they are calculated and stored in a fine radial grid  (2500 Ry) as a 
function of     , up to the maximum distance   

The value at arbitrary distances can be obtained by accurate cubic spline interpolation (once 
obtained, the fine grid does not suppose a penalty in execution time, since interpolation effort is 
independent of the number of grid points).  

Two center integrals (i. e. the overlap) have a form like 

          might be atomic orbitals, KB projectors or other functions centered on atoms 



We use real spherical harmonics 
for computational efficiency 

Associated Legendre polynomials Normalization factors 

l = 0 

m = 0 

l = 1 

m = -1 m = 0 m = +1 

Pictures courtesy of Victor Luaña 



The density matrix, a basic ingredient of SIESTA   

The electron density is given by 

Occupation of state  

Control convergence SCF 

Restart calculations 

Inserting the expansion into the definition of the density 

where, with                  , the density matrix is defined  



“Partial” calculation of the density matrix  
and the work on the grid 
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Three dimensional grid to compute                            
Hartree, exchange correlation and neutral atom potentials   

Find all the atomic orbitals that do not vanish at a given grid point  

(in practice, interpolate the radial part from numerical tables) 

Once the density is known, we compute the potentials EVERYTHING O(N) 

ρ(r) only in those grid points 
where it is not trivially zero 



The Poisson equation is solved in the 
real space grid by FFTs 

FFT scales as N log(N)  

However is cost is negligible and has no influence on the overall scaling properties. 

Multigrid techniques also available, although there are seldom competitive 
with FFT. However, they allow treating isolated charged systems exactly. 

Since the unit cell is periodic (naturally or artificially), we can 
expand the density in a Fourier series 



Three dimensional grid to compute                            
Hartree, exchange correlation and neutral atom potentials   

Volume per grid point 

Finally, we add together all the grid contributions and perform the integral 



Fineness of the grid controlled by a single parameter, 
the “mesh cutoff” 

Ecut : maximum kinetic energy of the plane waves that can be 
represented in the grid without aliasing  

Δx   
In the grid, we represent the density ⇒ grid cutoff not directly comparable 

       with the plane wave cutoff to represent wave functions 

(Strictly speaking, the density requires a value four times larger)  



Convergence of the results with the mesh cutoff 



The grid breaks traslation symmetry, 
the “eggbox” effect 

E 
x 

Grid points 

Orbital/atom 

Affects more to forces than to energy 
Solutions: 

 - Increase cutoff (computational effort in time and memory) 

 - “Grid-cell sampling” 

 - Filter the atomic orbitals [E. Anglada et al. Phys. Rev. B 73, 115122 (2006)]  



Once the hamiltonian and the overlap matrices have been 
built, we have to solve the Schrodinger equation 

= 

N × N N × N N × 1 N × 1 

Order-N Order-N3 

Minimization of an energy functional 

Not valid for metals or “dirty” gap systems 

Standard diagonalization techniques 

Both eigenvectors and eigenvalues available 

N  (# atoms) 

CPU 
load 

~ 100 

Early 

90’s 

~ N 

~ N3 
Recent SIESTA versions have available other possibilities: 
 
-  Iterative diagonalization N2xNocc 
-  PEXSI algorithm N2 

-  RT-TDDFT 
-   … 



If diagonalization, the generalized eigenvalue problem is 
solved using standard mathematical libraries 

Serial: 

BLAS 

LAPACK 

Parallel: 

BLACS 

SCALAPACK 

ELPA (over orbitals, 
Gamma point, no SO) Freely available in http://www.netlib.org 

Most machine vendors have their own implementations 
available for their own platforms (acml, mkl,…).  

= 

N × N N × N N × 1 N × 1 



The one-particle eigenstates are filled following the 
“Aufbau” principle: from lower to higher energies 

Occupation numbers 

The ground state has one (or two if spin independent) 
in each of the orbitals with the lowest eigenvalues 

A smearing of the electronic occupation might be done: 

    Fermi-Dirac   (OccupationFunction  FD) 

    ElectronicTemperature  

    Methfessel Paxton  (OccupationFunction  MP) 



The Kohn-Sham equations must be solved self-consistently 
The potential (input) depends on the density (output) 

Initial guess 

Calculate effective potential 

Solve the KS equation 

Compute electron density 
No 

Output quantities 
Energy, forces, 

stresses … 

Yes 
Self-consistent? 



Atomic forces and stresses obtained by direct diferentiation 
of the energy expression 

“One piece of energy ⇒ one piece of force and stress”  

Calculated only in the last self-consistent step 

Pulay corrections, related with the dependency of the basis set on 
atomic positions, automatically included 

Calculated as the analytical derivatives of the energy 



Recap: schematic flowchart of SIESTA 

Read and digest input 

Solve Schrödinger equation for the isolated atom 
(generate the basis set) 

Compute forces, stresses… 

Self consistent cycles 

Compute efficiently                       

always done in Order-N 

Two and three center integrals 

Solve the secular equation 
Order-N (insulators) 

Order-N3  



Suplementary information 



Two center integrals are calculated 
in Fourier space 

            can be seen as a convolution: in 1D 

Arfken, Mathematical Methods for Physicist, Ch 15.5 

Take the Fourier transform of one of the functions 

The Fourier transform of a convolution in real space is a product in reciprocal space 

Two center integrals (i. e. the overlap) have a form like 

          might be atomic orbitals, KB projectors or other functions centered on atoms 



Fourier transform of the atomic orbitals 

The Fourier transform of a convolution in real space is a product in reciprocal space 

The goal now is to compute the Fourier coefficients of the atomic functions 

Introducing the plane wave expansion in spherical harmonics and operating 



The Poisson equation is solved in 
the real space grid by FFTs 

FFT scales as N log(N)  

However is cost is negligible and has no influence on the overall scaling properties. 

Multigrid techniques (by Oswaldo Diéguez) coming soon 

Since the unit cell is periodic (naturally or atifically), 
we can expand the density in a Fourier series 

In reciprocal space, the differential Poisson equation is nothing else than a division 

Once the coefficients of the potential are known in reciprocal space, Fourier 
transform back to real space 



Generalized Gradient Approximation,                  
the derivative of the charge computed numerically 

Density gradient need not be provided, since they are 
calculated numerically using the density at the grid points 

A finer grid is required for GGA 

L. C. Balbás et al., Phys. Rev. B 64, 165110 (2001) 


