

Vibrational Modes

Roberta Farris

Wednesday 4th October 2023

First steps with SIESTA: from zero to hero

* Tutorials * Vibration modes and phonons

Vibration modes and phonons

In this set of exercises we will use the method of finitedifferences implemented in Siesta to compute force constants in real space. We will explore the cases of a crystal and a molecule. In the former case we will focus on the need of a supercell to represent the real-space force constants, while in the second we will understand how to visualize the vibrational modes.

- Phonon dispersion of bulk Si
- Modes of vibration of the benzene molecule

Step 1: Relax the structure.

The input file has been prepared for you in the file benzene.relax.fdf

%block Zmatrix molecule 2000 xm1 ym1 zm1 000 2 1 0 0 CC 90.0 60.0 0 0 0 2 2 1 0 CC CCC 90.0 0 0 0 2 3 2 1 CC CCC 0.0 000 2 4 3 2 CC CCC 0.0 000 2 5 4 3 CC CCC 0.0 000 1 1 2 3 CH CCH 180.0 0 0 1217 CH CCH 0.0 000 1328 CH CCH 0.0 000 1439 CH CCH 0.0 000 1 5 4 10 CH CCH 0.0 000 1 6 5 11 CH CCH 0.0 000 constants ym1 5.00 zm1 0.00 CCC 120.0 CCH 120.0 variables CC 1.390 CH 1.090 constraints xm1 CC -1.0 3.903229 %endblock Zmatrix

Step 1: Relax the structure.

The input file has been prepared for you in the file benzene.relax.fdf

	%block Zr	natr:	ix								
	molecule										
	2000	xm1	ym1	zm1	Θ	Θ	Θ				
	2100	CC	90.0	60.0	Θ	Θ	0				
	2210	CC	CCC	90.0	Θ	Θ	0				
	2321	CC	CCC	0.0	Θ	Θ	0				
	2432	CC	CCC	0.0	Θ	Θ	0				
	2543	CC	CCC	0.0	Θ	Θ	0				
	1123	СН	CCH	180.0	Θ	Θ	0				
	1217	СН	CCH	0.0	Θ	Θ	0				
	1328	СН	CCH	0.0	Θ	Θ	0				
	1439	СН	CCH	0.0	Θ	0	0				
	1 5 4 10	CH	CCH	0.0	Θ	0	0				
	1 6 5 11	СН	CCH	0.0	0	0	0				
	constants	2	0.011	0.0	-		-				
	vm1 5.0	90									
	7m1 0.0	10									
	CCC 120	0.0									
	CCH 120	0.0									
	variable										
	CC 1 20	, 10									
	CU 1.0	0									
	constrai	nt c						siesta	<pre>benzene.relax.fdf > be</pre>	nzene.	relax.out
XNHI UU -1.0 3.903229											
	%endproci	ZIN									

Step 2: Compute the IFCs

There is already a prepared input file with the relaxed structure. In principle, you should copy the relaxed coordinates and unit cell from the benzene.XV obtained in the previous step.

LatticeConstant	1.0 Bohr			
%block LatticeV	ectors			
20.932528150	0.00000000	0.000000000		
0.000000000	19.551203193	0.00000000		
0.000000000	0.00000000	10.714661844		
%endblock Latti	ceVectors			
AtomicCoordinat	esFormat NotScale	dCartesianBohr		
%block AtomicCo	ordinatesAndAtomic	cSpecies		
4.738724869	9.448634389	0.00000000	2	12.0107
6.057380810	11.732613477	-0.000000000	2	12.0107
8.694692693	11.732613477	-0.000000000	2	12.0107
10.013348634	9.448634389	-0.000000000	2	12.0107
8.694692693	7.164655301	-0.000000000	2	12.0107
6.057380810	7.164655301	-0.000000000	2	12.0107
2.647979028	9.448634389	-0.000000000	1	1.00794
5.012007889	13.543252488	-0.000000000	1	1.00794
9.740065613	13.543252488	-0.000000000	1	1.00794
12.104094475	9.448634389	-0.000000000	1	1.00794
9.740065613	5.354016289	-0.000000000	1	1.00794
5.012007889	5.354016289	-0.000000000	1	1.00794
%endblock Atomi	cCoordinatesAndAte	omicSpecies		

benzene.ifc.fdf

Step 2: Compute the IFCs

There is already a prepared input file with the relaxed structure. In principle, you should copy the relaxed coordinates and unit cell from the benzene.XV obtained in the previous step.

LatticeConstant %block LatticeV 20.932528150 0.000000000 0.000000000 %endblock Latti	: 1.0 Bohr /ectors 0.000000000 19.551203193 0.000000000 iceVectors	0.00000000 0.00000000 10.714661844							
AtomicCoordinat	esFormat NotScaled	CartesianBohr							
4.738724S10S	sta < benz	ene.ifc.fo	לל ₂}	<pre>> benzene.ifc.out</pre>					
6.057380810	11.732613477	-0.000000000	2	12.0107					
8.694692693	11.732613477	-0.000000000	2	12.0107					
10.013348634	9.448634389	-0.000000000	2	12.0107					
8.694692693	7.164655301	-0.00000000	2	12.0107					
6.057380810	7.164655301	-0.00000000	2	12.0107					
2.647979028	9.448634389	-0.00000000	1	1.00794					
5.012007889	13.543252488	-0.000000000	1	1.00794					
9.740065613	13.543252488	-0.000000000	1	1.00794					
12.104094475	9.448634389	-0.000000000	1	1.00794					
9.740065613	5.354016289	-0.000000000	1	1.00794					
5.012007889	5.354016289	-0.000000000	1	1.00794					
%endblock AtomicCoordinatesAndAtomicSpecies									

benzene.ifc.fdf

Step 3: Compute the dynamical matrix at Gamma

In the case of a molecule, only the Gamma point is relevant. It is specified in the same way as to compute the electronic band structure, in the same file benzene.ifc.fdf

Compute both phonon eigenvalues and eigenvectors Eigenvectors .true. BandLinesScale pi/a %block BandLines \Gamma # Only the Gamma point (enough for a molecule) 1 0.0 0.0 0.0 %endblock BandLines

vibra < benzene.ifc.fdf > vibra.out

Step 4: Visualize the normal modes:

Needed files:

- <u>benzene.XV</u>
- <u>benzene.vectors</u>

You need to specify:

- units of lattice vectors(Angstroms or Bohr)
- · the zero of the coordinates
- the unit cell lattice vectors
- modes to visualize (the first and the last)
- the amplitude
- the steps of the animation

It is already done in vib2xsf.dat for you. Run:

vib2xsf < vib2xsf.dat</pre>

*By Andrei Postnikov

Step 5: XCrysden

Output files:

- <u>Benzene.Mode_*.XSF: contains a static structures (as in .XV), with arrors</u> added to each atom to indicate displacement pattern.
- <u>Benzene.Mode_*.AXSF: contains the animation of a phonon, for a defined</u> <u>amplitude and number of steps.</u>

Step 5: XCrysden

Output files:

- <u>Benzene.Mode_*.XSF: contains a static structures (as in .XV), with arrors</u> added to each atom to indicate displacement pattern.
- <u>Benzene.Mode_*.AXSF: contains the animation of a phonon, for a defined</u> <u>amplitude and number of steps.</u>

Home | About | Description | Documentation | Download | News | Links

Roberta Farris

First steps with SIESTA: from zero to hero (2023)

Step 5: XCrysden

Output files:

- <u>Benzene.Mode_*.XSF: contains a static structures (as in .XV), with arrors</u> added to each atom to indicate displacement pattern.
- <u>Benzene.Mode_*.AXSF: contains the animation of a phonon, for a defined</u> <u>amplitude and number of steps.</u>
 ...And have fun!

Roberta Farris

First steps with SIESTA: from zero to hero (2023)

Results: examples of two modes....

