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Importance of the electric polarization

The macroscopic polarization is the most essential concept in 
any phenomenological description of dielectric media

The macroscopic polarization is an intensive vector quantity
An intensive property is one whose magnitude is independent of the size of the system

Intuitively, carries the meaning of a electric dipole moment per unit volume

The presence of an spontaneous and switchable macroscopic polarization is the 
defining property of a ferroelectric material

The macroscopic polarization is central to the whole physics of ferroelectrics

Despite its primary role in phenomenological theories and its overwhelming importance,  
the macroscopic polarization has long evaded microscopic understanding 



The standard picture:                                  
the Clausius-Mossotti model

The presence of identifiable 
polarizable units is assumed

The Clausius-Mossotti macroscopic polarization is defined in a crystalline 
Claussius-Mossotti solid as 

The charge distribution is 
regarded as the superposition of 

localized contributions, each 
providing an electric dipole
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The Claussius-Mossotti model        
does not correspond to reality
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Fig. 2. Induced (pseudo)charge density ⇢(ind)(r) in the (110) plane linearly induced
by a constant field E in the [111] direction, indicated by the arrow, in crystalline
silicon. The field has unit magnitude (in a.u.) and the contours are separated by
30 charge units per cell. Shaded areas indicate regions of negative charge; circles
indicate atomic positions

But what about real materials? This is precisely the case in point: the elec-
tronic polarization charge in a crystal has a periodic continuous distribution,
which cannot be unambiguously partitioned into localized contributions.

In typical FE oxides the bonding has a mixed ionic/covalent character [3],
with a sizeable fraction of the electronic charge being shared among ions in a
delocalized manner. This fact makes any CM picture totally inadequate. In
order to emphasize this feature, we take as a paradigmatic example the ex-
treme covalent case, namely, crystalline silicon. In this material, the valence-
electron distribution essentially forms a continuous tetrahedral network, and
cannot be unambiguously decomposed into either atomic or bond contri-
butions. We show in Fig. 2 the analogue of Fig. 1 for this material, with
the electronic distribution polarized by an applied field along the [111] di-
rection. The calculation is performed in a first-principle framework using a
pseudopotential implementation of density-functional theory [4,5]; the quan-
tity actually shown is the induced polarization pseudocharge of the valence
electrons.

Clearly, the induced charge is delocalized throughout the cell and any
partition into localized polarization centers, as needed for establishing a CM
picture, is largely arbitrary. Looking more closely at the continuous polariza-
tion charge of Fig. 2, one notices that in the regions of the bonds parallel to
the field the induced charge indeed shows a dipolar shape. It is then tempting
to identify the CM polarization centers with these bond dipoles, but we shall
show that such an identification would be incorrect. The clamped-ion (also
called static high-frequency) dielectric tensor [6] can be defined as

"1 = 1 + 4⇡� = 1 + 4⇡
@P

@E , (1)

where P is the macroscopic polarization and E is the (screened) electric field.
One would like to replace P with PCM, i.e. the induced bond dipole per

Induced charge-density in the           plane linearly induced 
by a constant field       in the [111] direction
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The electronic polarization charge in a 
crystal has a periodic continuous 

distribution which cannot be 
unambiguously partitioned into localized 

contributions

The central point behind the Claussius-
Mossotti  view is that the distribution of 

induced charge is resolved into 
contributions that can be ascribed to 

identifiable “polarization centers”
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Fig. 1. A polarized ionic crystal having the NaCl structure, as represented within
an extreme Clausius-Mossotti model. We qualitatively sketch the electronic polar-
ization charge (shaded areas indicate negative regions) in the (110) plane linearly
induced by a constant field E in the [111] direction as indicated by the arrow. The
anions (large circles) are assumed to be polarizable, while the cations (small circles)
are not. The boundary of a Wigner-Seitz cell, centered at the anion, is also shown
(dashed line)

such an extreme model is neither a realistic nor a useful one, particularly for
FE materials.

Experimentalists have long taken the pragmatic approach of measuring
polarization di↵erences as a way of accessing and extracting values of the
“polarization itself.” In the early 1990s it was realized that, even at the theo-
retical level, polarization di↵erences are conceptually more fundamental than
the “absolute” polarization. This change of paradigm led to the development
a new theoretical understanding, involving formal quantities such as Berry
phases and Wannier functions, that has come to be known as the “modern
theory of polarization.” The purpose of the present Chapter is to provide
a pedagogical introduction to this theory, to give a brief introduction to its
computational implementation, and to discuss its implications for the physi-
cal understanding of FE materials.

1.1 Fallacy of the Clausius-Mossotti picture

Within the CM model the charge distribution of a polarized condensed system
is regarded as the superposition of localized contributions, each providing an
electric dipole. In a crystalline system the CM macroscopic polarization PCM

is defined as the sum of the dipole moments in a given cell divided by the cell
volume. We shall contrast this view with a more realistic microscopic picture
of the phenomenon of macroscopic polarization.

An extreme CM view of a simple ionic crystal having the NaCl structure
is sketched in Fig. 1. The essential point behind the CM view is that the
distribution of the induced charge is resolved into contributions which can be
ascribed to identifiable “polarization centers.” In the sketch of Fig. 1 these are
the anions, while in the most general case they may be atoms, molecules, or
even bonds. This partitioning of the polarization charge is obvious in Fig. 1,
where the individual localized contributions are drawn as non-overlapping.

Na

Cl
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region of electronic 
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Figure 1-5: Hydrogen terminated bonds are the dangling bonds.40 

 

Figure 1-6: Back bonds and dangling bonds are denoted for a surface atom A on the 
surface represented by the green plane‡ 

1.3.2 Metal Assisted Chemical Etching (MACE) 

Metal assisted chemical etching (MACE) is an anisotropic wet etch technique that 

has been shown to be able to fabricate high aspect ratio features in c-Si, a-Si, and 

GaAs.3,41-47 

                                                 
‡ http://www.fujitsu.com/img/PR/2008/20081216-01al.jpg 



Fallacy of defining the polarization via 
the charge distribution

First trial: since       carries the meaning of dipole moment per unit volume,         
it is tempting to define it as

the dipole of the macroscopic sample divided by its volume

In order to apply this equation, we need to assume a 
macroscopic but finite crystal

But then the integral has contributions of both the surface and the bulk regions, 
that are difficult to disentangle

Imagine a cubic sample of dimensions 

Conference on Computational Physics, Los Angeles, 2005
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P = dsample / Vsample ?

+s-s

DP = ( L2 s ) . L / L3

L x L x L sample:

The surface preparation changes in such a way 
that a new surface charge density         appears 

on the right surface face and          on the left
Its surface preparation changes might mean:
- Adsorption of some molecules from the ambient
- Oxydation
- Surface reconstruction
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P = dsample / Vsample ?

+s-s

DP = ( L2 s ) . L / L3

L x L x L sample:

The surface preparation changes in such a way 
that a new surface charge density         appears 

on the right surface face and          on the left

This results in a change in the dipole moment scaling as 

And then in a change in                despite the fact that the conditions in the interior 
have not changed. This is not an useful bulk definition of the polarization



Fallacy of defining the polarization via 
the charge distribution

Second trial: since       carries the meaning of dipole moment per unit volume,         
it is tempting to define it as

the dipole of one unit cell divided by the volume of the unit cell

The integration is carried out on one unit cell well in the interior of the sample
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P = dcell / Vcell ?

dcell = 0
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dcell =

The result depends on the shape and location of the unit cell
The average of         over all possible translational shifts vanishes



Fallacy of defining the polarization via 
the charge distribution

But this equation does not uniquely define           .
Any divergence free vector field (for instance, a constant field) 

can be added to           without affecting the left-hand side

More over…

Macroscopic polarization Integral over the surface 
charge density.

Charge transferred 
across the cell boundary

Bulk term that depends 
on the charge density

The two terms depend on the choice of the unit cell.
Only the sum is invariant

Third trial: define      as the cell average of a microscopic polarization 



Fallacy of defining the polarization via 
the charge distribution

The integration is carried out on one unit cell well in the interior of the sample

is well defined only within a extreme 
Claussius-Mossotti model, where the periodic 
charge can be decomposed with no ambiguity 

by chosing the cell boundary to lie in an 
interstitial region of vanishing charge density 

Ferroelectric PbTiO3   (Courtesy N. Marzari)

In many materials, a Claussius-Mossotti model 
is completely inappropriate

Third trial: define      as the cell average of a microscopic polarization 



Fallacy of defining the polarization via 
the charge distribution

It is impossible to obtain the value of        from the induced charge density alone

A knowledge of the periodic electronic charge 
distribution in a polarized crystalline solid cannot, 

even in principle, be used to construct a 
meaningful definition of the polarization

This message has not reached the most popular textbooks
Ch. Kittel 

Introduction to Solid State Physics
John Wiley and Sons



Counterintuitive and disturbing conclusion:               
The macroscopic polarization in the bulk region of a solid 
should be determined by what “happens” in the bulk

Solution: focus on the CHANGE in              that occurs during some process



Polarization as an adiabatic flow of current
Most measurements of bulk macroscopic polarization of materials do not 

access its absolute value, but only its derivatives 

Electrical permittivity Pyroelectric coefficients

Piezoelectric tensors Born effective charges



Fundamental equation of the 
modern theory of polarization

is the macroscopic (cell averaged) 
current density

In the adiabatic limit:

goes to zero

goes to infinity

So the integral stays finite

The induced macroscopic polarization in condensed matter can be 
defined in terms of adiabatic flows of currents within the materials

The value of the macroscopic polarization is determined by what 
happens in the bulk of the solid, being insensitive to the surface



Basic prescriptions for a 
theory of polarization

Let us introduce a parameter       having the meaning of a 
dimensionless adiabatic time

varies continously between:
- An “initial state” (              ), i.e. the state of the system before the

application of some perturbation (sublattice displacement, strain, 
electric field, etc). 

- A “final state” (             ), i.e. the state of the system after the
application of the perturbation

This is a well defined bulk vector property.      
It directly corresponds with the response properties

Important: the transient current has to be due only to the change in the polarization.
The system has to remain insulating for all the intermediate values of     . 

If not, an extra contribution to the current not uniquely defined will contribute



Basic prescriptions for a theory of polarization:   
Case of the spontaneous polarization of a ferroelectric

varies continously between:
- An “initial state” (              ), i.e. the state of the system in a 

centrosymmetric reference structure
- A “final state” (             ), i.e. the state of the system in the

spontaneously polarized structure

For the case of pyroelectricity, piezoelectricity 
(measured in a shorted capacitor), dynamical charges, 
and spontaneous polarization, the derivative is taken at 

zero electric field

scale the sublattice displacements



Basic prescriptions for a theory of polarization:   
Case of the spontaneous polarization of a ferroelectric

varies continously between:
- An “initial state” (              ), i.e. the state of the system in a 

centrosymmetric reference structure
- A “final state” (             ), i.e. the state of the system in the

spontaneously polarized structure

This is related with a current.

scale the sublattice displacements

The current carrying particles are:
- Nuclei: can be safely dealt with as classical point charges whose contributions are trivial
- Electrons: quantum nature is essential



Formal description of the Berry-phase approach:  
Formulation in continuous k-space

This derivative is a well defined bulk-vector property

The total change in polarization can be computed as a the integral as a 
function of the parameter     that changes continuously and adiabatically 

betweeen an initial state                  and a final state 



Formal description of the Berry-phase approach:  
Formulation in continuous k-space

The trivial nuclear contribution           has been restored

But who is

The central result of 
the modern theory of 

polarization 



Formal description of the Berry-phase approach:  
Formulation in continuous k-space

Central result of the modern theory of polarization

“Berry connection” or “gauge potential”

Its integral over a close manifold (here the Brillouin zone) is known
as a “Berry phase”

The result is independent of the path traversed through parameter space. 
It depends only on the end-points.

Implicitly, we assume that the system must remain insulating everywhere 
along the path (we remain in the adiabatic approximation)



Electronic polarization as a Berry phase. 
Discretize equation (in 1D)

In this equation we have to compute the global product of wavefunctions
across the Brillouin zone

In general, this is a complex number
The operation            takes the phase of this number 

This phase is insensitive to a change of any of the wavefunctions               
since each           appears once in  bra and once in a ket.

The Berry phase        gives the contribution to the polarization arising from band 
n, as a global phase property of the manifold of occupied one-electron states



Electronic polarization: formulation in 3D

To compute

The sampling of the Brillouin zone is arranged as 

is the direction along

refers to the 2D space of wavevectors 
spanning the other two primitive 

reciprocal lattice vectors

For a given          the Berry 
phase is computed along 
the string of M k-points 

extending along         as in 
the one-dimensional case   

%block PolarizationGrids
   20   4   4  yes 
    4  20   4  yes
    4   4  20  yes
%endblock PolarizationGrids



Formal polarization as a multivalued vector quantity

The question, what is       is answered not by giving a single-vector, 
but a lattice of vectors related by translations  



Central result of the modern theory of polarization

The formal polarization    

is only well-defined 

where:

is a any lattice vector

is the primitive-cell volume


