A first encounter with siesta

02/10/2023 - Federico Pedron

Reminder: how to connect

https://siesta-project.org/siesta/events/SIESTA_School-2023/MN4.html

Home About Code Documentation Pseudopotentials The Team News Events Support

SIESTA School 2023: MareNostrum 4

MareNostrum 4 is the largest operational supercomputer of the Barcelona Supercomputing Center. Each node contains 2 Intel Xeon Platinum processors (with 24 cores each) and 96 GB of RAM. They all run SUSE Linux 12.

You should have received your BSC credentials in your institutional email account on September 30th. Your BSC account is already enabled. Please contact the organisers if you have not received this email.

Connecting to MN4

From your computer terminal, use your SSH client to connect to a MN4 login node. There are three login nodes, m1.bsc.es, m2.bsc.es, and m3.bsc.es. You can connect to any of them, they are used interchangeably in the examples below.

Via conventional SSH client (Mac, Linux, Windows with WSL/Cygwin)

From a terminal, run

\$ ssh <USERNAME>@mn1.bsc.es

where <USERNAME> is your BSC username (e.g., ctn99999). You will be prompted for the corresponding password.

If you want to enable visualization, you need to use the -x option:

\$ ssh -X <USERNAME>@mn1.bsc.es

Via PuTTY or mobaXterm

If you don't have any SSH client installed in your computer, please download and install mobaXterm (recommended) or PuTTY.

When you open the graphical interface define the server/host name (mn3.bsc.es) and provide your username and password when prompted. For mobaXterm, there is a short generic demo video available here.

For visualizations using PuTTY, please keep in mind the following:

Under connection → SSH → X11, make sure that the "Enable X11 forwarding" option is checked.
 You also need to install xMing.

In mobaXterm this is enabled by default.

Reminder: how to connect

https://siesta-project.org/siesta/events/SIESTA_School-2023/MN4.html

ssh nct01YYY@mn1.bsc.es

Where YYY is a number unique to each of you (001, 008, 017, 035, 079). Use also mn2, mn3! (only for data/password: dt01.bsc.es)

Then:

cd /gpfs/scratch/nct01/nct01YYY (we will run things here)

Reminder: tutorial files

Each day, you should copy the tutorial folder available at /gpfs/projects/nct00/nct00003/TUTORIALS/dayX

For example:

cp -r /gpfs/projects/nct00/nct00003/TUTORIALS/day1 day1

In each run folder, copy the sample run script from /gpfs/projects/nct00/nct00003/SCRIPTS/runmn.sh

cp /gpfs/projects/nct00/nct00003/SCRIPTS/runmn.sh 1-FirstEncounter/CH4/.cp /gpfs/projects/nct00/nct00003/SCRIPTS/runmn.sh 1-FirstEncounter/CH3/.

Edit the run script!

```
#!/bin/bash
#SBATCH -J tutorialXX
#SBATCH -n 4
#SBATCH -t 0:30:00
#SBATCH -o %x-%j.out
#SBATCH -e %x-%j.err
#SBATCH -D .
  DO NOT CHANGE THIS LINE
#
source /gpfs/projects/nct00/nct00003/siestarc.sh
       THE CORRECT INPUT AND OUTPUT FILES.
srun -n 4 siesta < input.fdf > output.out
```

Edit the run script!

```
#!/bin/bash
#SBATCH -J tutorialXX
#SBATCH -n 4
#SBATCH -t 0:30:00
#SBATCH -o %x-%j.out
#SBATCH -e %x-%j.err
#SBATCH -D .
  DO NOT CHANGE THIS LINE
#
source /gpfs/projects/nct00/nct00003/siestarc.sh
  EDIT THE CORRECT INPUT AND OUTPUT FILES.
srun -n 4 siesta < input.fdf > output.out
```

Submit!

sbatch runmn.sh

To use reservations:

sbatch runmn.sh --reservation=SIESTA-DAY

sbatch runmn.sh --reservation=SIESTA-NIGHT

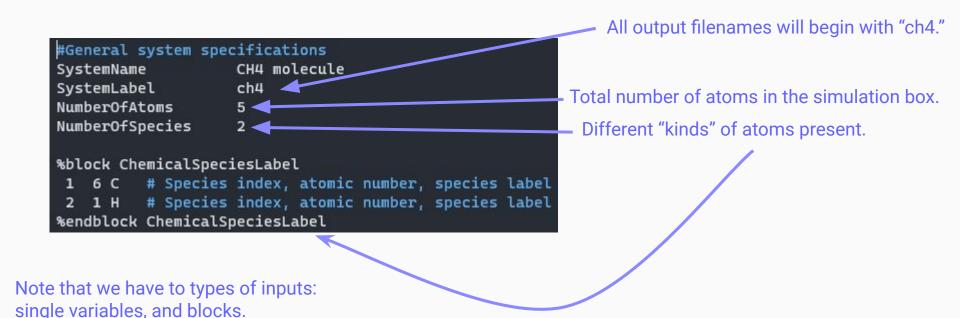
https://siesta-project.org/siesta/events/SIESTA_School-2023/MN4.html

A look at the inputs

What are the main ingredients?

For most basic SIESTA calculations, we need at least two inputs:

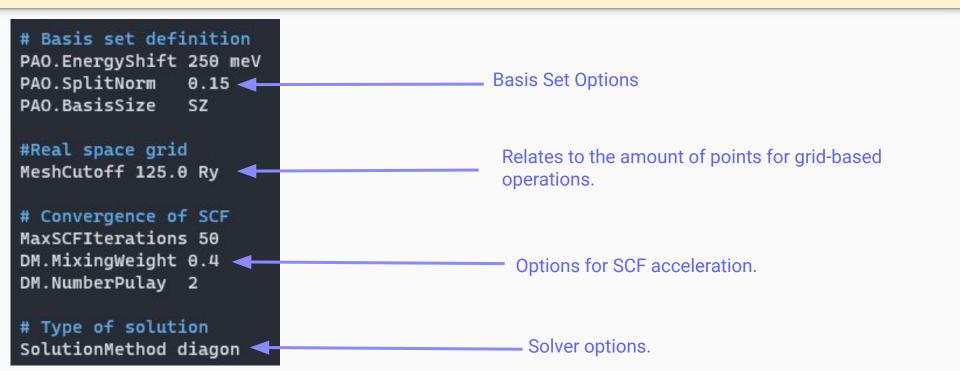
 Pseudo potential files (e.g. available in PSML format from <u>http://www.pseudo-dojo.org</u>, or a PSF created with ATOM).


• An fdf file with the input options.

What's in the FDF?

The fdf file contains all relevant input options for our simulation: geometry information, atomic species information, level of theory, basis set information, and a plethora of fine-tuning options.

Let's have a look at the first fdf for this tutorial...


What's in the FDF? System information

What's in the FDF? System geometry

#Unit cell for the calculation LatticeConstant 15 Ang - %block LatticeVectors	Multiplies all lattice vectors by a constant. Note the units.
1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000	The lattice vectors themselves.
%endblock LatticeVectors	
#Atomic coordinates AtomicCoordinatesFormat Ang %block AtomicCoordinatesAndAtomicSpecies	Unit for the atomic coordinates block. Can also be "fractional".
0.000 0.000 0.000 1	
1.219 -0.284 -0.377 2	
-0.284 1.219 -0.377 2 -0.140 -0.140 1.219 2 -0.833 -0.833 -0.503 2	Atomic coordinates and species index (1 for C, 2 for H).
%endblock AtomicCoordinatesAndAtomicSpecies	

What's in the FDF? Other options

Let's try it!

Reminders

TUTORIAL:

https://docs.siesta-project.org/projects/siesta/en/latest/tutorials/basic/first-encounter/index.html (last part is optional)

- 1) ssh <u>nct01YYY@mn2.bsc.es</u> \leftarrow (also mn1, mn3)
- 2) cd /gpfs/scratch/nct01/nct01YYY
- 3) cp /gpfs/projects/nct00/nct00003/TUTORIALS/day1.
- 4) cp /gpfs/projects/nct00/nct00003/SCRIPTS/runmn.sh.
- 5) (move and edit runmn.sh to your run folders)
- 6) sbatch runmn.sh

Let's have a look at the outputs...

Installation and run info, Start Time

```
Architecture
Compiler version: GNU-11.3.0
Compiler flags : -fallow-argument-mismatch;-O3 -march=native
PP flags
                 ____
Libraries
               . ____
Parallelisations: MPI
GEMM3M support
NetCDF support
NetCDF-4 support
Lua support
Runtime information:
* Directory : /home/fnpedron/siesta-docs/work-files/tutorials/basic/first-encounter/CH4
* Running on 4 nodes in parallel.
>> Start of run: 21-SEP-2023
                              9:39:43
                          ******
                            WELCOME TO SIESTA
```

0_NORMAL_EXIT	H.ion.nc	ch4.FA
BASIS_ENTHALPY	H.ion.xml	ch4.KP
BASIS_HARRIS_ENTHALPY	H.psf	ch4.ORB_INDX
C.gga.psf	INPUT_TMP.45433	ch4.STRUCT_OUT
C.ion	MESSAGES	ch4.XV
C.ion.nc	OUTVARS.yml	ch4.alloc
C.ion.xml	PARALLEL_DIST	ch4.bib
C.psf	TIMES	ch4.contrib.EPSIMG
CLOCK	ch4.BONDS	ch4.fdf
FORCE_STRESS	ch4.BONDS_FINAL	ch4.out
H.gga.psf	ch4.DM	ch4.times
H.ion	ch4.EIG	fdf.20230921T093943.534.log

What are all of these files???

Density Matrix Restart	Forces on atoms	Coordinate Restart
0_NORMAL_EXT	H.ion.nc	ch4.FA
BASIS_ENTHALRY	H.ion.xml	ch4.KP
BASIS_HARRIS_ENTHALPY	H.psf	ch4.0RB_INDX
C.gga.psf	INPUT_TMP.45433	Ch4_STRUCT_OUT
C.ion	MESSAGES	ch4.XV
C.ion.nc	OUTVARS.yml	ch4.alloc
C.ion.xml	PARALLEL_DIST	ch4.bib
C.psf	TIMES	ch4.contrib.EPSIMG
CLOCK	ch4.BONDS	ch4.fdf
FORCE_STRESS	ch.BONDS_FINAL	ch4.out
H.gga.psf	ch4.DM	ch4.times
H.ion	ch4.EIG	fdf.20230921T093943.534.log
	4	
Forces and Stress		I
KS eigen	values	Timing information

What are all of these files???

0_NORMAL_EXIT	H.ion.nc	ch4.FA
BASIS_ENTHALPY	H.ion.xml	ch4.KP
BASIS_HARRIS_ENTHALPY	H.psf	ch4.ORB_INDX
C.gga.psf	INPUT_TMP.45433	ch4.STRUCT_OUT
C.ion	MESSAGES	ch4.XV
C.ion.nc	OUTVARS.yml	ch4.alloc
C.ion.xml	PARALLEL_DIST	ch4.bib
C.psf	TIMES	ch4.contrib.EPSIMG
CLOCK	ch4.BONDS	ch4.fdf
FORCE_STRESS	ch4.BONDS_FINAL	ch4.out
H.gga.psf	ch4.DM	ch#.times
H.ion	ch4.EIG	fdf.20230921T093943.534.log

General Output file: log, out, you name it

Outputs	**************************** Dump of input data file ************************************
Things we have in our FDF file	SystemLabel ch4 NumberOfAtoms 5 NumberOfSpecies 2 %block ChemicalSpeciesLabel 1 6 C # Species index, atomic number, species label 2 1 H # Species index, atomic number, species label %endblock ChemicalSpeciesLabel #Unit cell for the calculation LatticeConstant 15 Ang %block LatticeVectors 1.000 0.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 %endblock LatticeVectors #Atomic coordinates AtomicCoordinatesFormat Ang %block AtomicCoordinatesAndAtomicSpecies 0.000 0.000 0.000 1 1.219 -0.284 -0.377 2 -0.284 1.219 -0.377 2 -0.140 -0.140 1.219 2 -0.333 -0.833 -0.503 2 %endblock AtomicCoordinatesAndAtomicSpecies # Basis set definition PAO.EnergyShift 250 meV PAO.SplitNorm 0.15 PAO.BasisSize SZ #Real space grid Meshcutoff 125.0 Ry # Convergence of SCF MaxSCFIterations 50 DM.MixingWeight 0.4 DM.NumberPulay 2 # Type of solution SolutionMethod diagon

initatom: Reading input for the pseudopotentials and atomic orbitals ------Species number: 1 Atomic number: 6 Label: C Species number: 2 Atomic number: 1 Label: H

---- Processing specs for species: C Ground state valence configuration: 2502 2p02 Reading pseudopotential information in formatted form from: C.psf

---- Processing specs for species: H Ground state valence configuration: 1s01 Reading pseudopotential information in formatted form from: H.psf

---- Pseudopotential check for C

Pseudized shells: 2s(2.00) rc: 1.29 2p(2.00) rc: 1.29 3d(0.00) rc: 1.29 4f(0.00) rc: 1.29 Valence configuration for ps generation: (assumed as above)

---- Pseudopotential check for H

Pseudized shells: 1s(1.00) rc: 1.25 2p(0.00) rc: 1.25 3d(0.00) rc: 1.25 Valence configuration for ps generation: (assumed as above) For C, standard SIESTA heuristics set lmxkb to 2 (one more than the basis l, including polarization orbitals). Use PS.lmax or PS.KBprojectors blocks to override. For H, standard SIESTA heuristics set lmxkb to 1 (one more than the basis l, including polarization orbitals). Use PS.lmax or PS.KBprojectors blocks to override.

Species and pseudopotential information

atom: -----

atom: SANKEY-TYPE ORBITALS:

SPLIT: Orbitals with angular momentum L= θ

SPLIT: Basis orbitals for state 2s

SPLIT: PAO cut-off radius determined from an SPLIT: energy shift= 0.018374 Ry

izeta = 1

lambda	1.000000
rc	4.191849
energy	-0.983900
kinetic	0.912099
<pre>potential(screened)</pre>	-1.895999
potential(ionic)	-5.500930

SPLIT: Orbitals with angular momentum L= 1

SPLIT: Basis orbitals for state 2p

SPLIT: PAO cut-off radius determined from an SPLIT: energy shift= 0.018374 Ry

izeta = 1

```
lambda = 1.000000
rc = 4.993604
energy = -0.381878
kinetic = 2.577411
potential(screened) = -2.959289
potential(ionic) = -6.460511
atom: Total number of Sankey-type orbitals: 4
```

atm_pop: Valence configuration (for local Pseudopot. screening): 2s(2.00) 2p(2.00) Vna: chval, zval: 4.00000 4.00000

Vna: Cut-off radius for the neutral-atom potential: 4.993604

Basis set generation (next session!)

Coordinates and selected options

coor:	Atomic-coordinates input format =	Cartesian coordinates
coor:		(in Angstroms)
	Atomic coordinates (Bohr) and species	
siesta:	0.00000 0.00000 0.00000 1	1
siesta:		2
siesta:		3
	-0.26456 -0.26456 2.30358 2	4
siesta:	-1.57414 -1.57414 -0.95053 2	5
siesta:	System type = molecule	
initatom	lists: Number of atoms, orbitals, and p	rojectors: 5 8 25
siesta:	********************* Simulation paramet	ers ************************************
siesta:		
	The following are some of the parameter	
	A complete list of the parameters used,	including default values,
	can be found in file out.fdf	
siesta:		
redata:	Spin configuration	= none
	Number of spin components	= 1
	Time-Reversal Symmetry	= T
	Spin spiral	= F
	Long output	= F
	Number of Atomic Species	= 2
	Charge density info will appear in .RHO	file
	Write Mulliken Pop.	= NO
	Matel table size (NRTAB)	= 1024
	Mesh Cutoff	= 125.0000 Ry
	Net charge of the system	= 0.0000 e
	Min. number of SCF Iter	= 0
	Max. number of SCF Iter	= 50
	SCF convergence failure will abort job	
	SCF mix quantity	= Hamiltonian
	Mix DM or H after convergence	= F
	Recompute H after scf cycle	= F
redata:	Mix DM in first SCF step	= T
redata:	Write Pulay info on disk	= F

______ Single-point calculation outcell: Unit cell vectors (Ang): 15.000000 0.000000 0.000000 0.000000 15.000000 0.000000 0.000000 0.000000 15.000000 outcell: Cell vector modules (Ang) 15.000000 15.000000 15.000000 outcell: Cell angles (23,13,12) (deg): 90.0000 90.0000 90.0000 outcell: Cell volume (Ang**3) 3375.0000 <dSpData1D:S at geom step 0 <sparsity:sparsity for geom step 0</pre> nrows_g=8 nrows=2 sparsity=.2500 nnzs=16, refcount: 7> <dData1D:(new from dSpData1D) n=16, refcount: 1> refcount: 1> new_DM -- step: Initializing Density Matrix... DM filled with atomic data: <dSpData2D:DM initialized from atoms <sparsity:sparsity for geom step 0</pre> nrows_g=8 nrows=2 sparsity=.2500 nnzs=16, refcount: 8> <dData2D:DM n=16 m=1, refcount: 1> refcount: 1> No. of atoms with KB's overlaping orbs in proc θ. Max # of overlaps: 5 InitMesh: MESH = 108 x 108 x 108 = 1259712 InitMesh: Mesh cutoff (required, used) = 125.000 143.274 Ry New grid distribution [1]: sub = 2 New grid distribution [2]: sub = 2 New grid distribution [3]: sub = 2 Setting up quadratic distribution...

Type of run, cell information.

Sparsity information.

8

Mesh information (tomorrow!)

stepf: Fermi-Dirac step function

siesta:	Program	5	energy decomposition	(eV)
siesta:	Ebs	=	-86.773862	()
	Eions		383.324493	
siesta:			115.426770	
	Ekin		143.738590	
siesta:	Enl	=	-16.728728	
siesta:	Eso	Ξ	0.00000	
siesta:	Edftu	Ξ	0.00000	
siesta:	DEna	Ξ	1.592579	
siesta:	DUscf	=	0.349516	
siesta:	DUext	=	0.00000	
siesta:	Ex	=	-64.874822	
siesta:	Ec	Ξ	-10.703118	
siesta:	Exc	Ξ	-75.577940	
siesta:	EbV	≡	0.00000	
siesta:	eta*DQ	=	0.00000	
siesta:	Emadel	=	0.00000	
siesta:	Emeta	Ξ	0.00000	
siesta:	Emolmec	=	0.00000	
siesta:	Ekinion	=	0.00000	
siesta:	Eharris	=	-223.671697	
siesta:	Etot	Ξ	-214.523706	
siesta:	FreeEng	=	-214.523706	

Initial, non-SCF energy decomposition.

i	.scf E	harris(eV)	E_KS(eV)	FreeEng(eV)	dDmax	Ef(eV)	dHmax(eV)
scf:	1 -	-223.671697	-214.523706	-214.523706	1.090911 -	-7.083002	1.436999
timer: Ro	utine,Cal	ls,Time,% = Ite	erSCF 1	0.133 2	9.48		
scf:	2 -	-214.585551	-214.573147	-214.573147	0.040577 -	-6.647325	0.203018
scf:	3 -	-214.573456	-214.573477	-214.573477	0.004139 -	-6.585363	0.150120
scf:	4 -	-214.573442	-214.573493 -214.573506	-214.573493	0.002062 -	-6.424159	0.074339
scf:	5 -	-214.573514	-214.573506	-214.573506	0.000928 -	-6.476298	0.003034
scf:	6 -	-214.573506	-214.573506	-214.573506	0.000039 -	-6.474131	0.000389
and a series bear							
SCF Conve	rgence by	/ DM+H criterio	า				
max H_ou	t - H_inl	(eV):	0.0000385344 0.0003888059				
SCF cvcle	converge	d after 6 itera	ations				
	-						
Usina DM	out to co	mpute the final	L energy and for	ces			
			g orbs in proc 0		erlaps:	5	8
			•				
siesta: E	KS(eV) =	-	214.5735				
siesta: E	KS-Ee	eggbox = -:	214.5735				
		- 5 5					
siesta: A	tomic for	ces (eV/Ang):					
Tot	0.000066	6 0.000066	-0.001085				
Max	2.352006	5					
		5 sqrt(Sum H	f_i^2 / 3N)				
Max	2.352006	5 constrained	d				
0.000000							
Stress te	nsor Voic	t[x.v.z.vz.xz.)	ky] (kbar):	1.99	1.99	0.95	-0.20
		/cell) -218					
		eV/cell) -21					
gee ch							

SCF cycle information

Converged KS energy

Converged total forces and cell stress

Final energy decomposition

siesta:	Program'	's enei	rgy de	composition	(eV):
siesta:	Ebs		-90	.137390	
siesta:	Eions		383	. 324493	
siesta:	Ena		115	.426770	
siesta:	Ekin		141	.310823	
siesta:	Enl		-16	.669337	
siesta:	Eso		Θ	.000000	
siesta:	Edftu		Θ	.000000	
siesta:	DEna		3	.517376	
siesta:	DUscf		Θ	.257037	
siesta:	DUext		Θ	.000000	
siesta:	Ex		-64	.416938	
siesta:	Ec		-10	.674744	
siesta:	Exc		-75	.091682	
siesta:	EbV		Θ	.000000	
siesta:	eta*DQ		Θ	.000000	
siesta:	Emadel		Θ	.000000	
siesta:	Emeta		Θ	.000000	
siesta:	Emolmec		Θ	.000000	
siesta:	Ekinion		Θ	.000000	
siesta:	Eharris		-214	.573506	
siesta:	Etot		-214	.573506	
siesta:	FreeEng		-214	.573506	
siesta:	Final er	nergy ((eV):		
siesta:	Band St	ruct.		-90.137390	
siesta:	Ki	inetic		141.310823	
siesta:	Ha	artree		282.193258	
siesta:		Edftu		0.00000	
siesta:	Es	50		0.00000	
siesta:	Ext.	field		0.00000	
siesta:		Exch.		-64.416938	
siesta:		Corr.		-10.674744	
siesta:		< bias		0.00000	
siesta:		-corr.		-75.091682	
siesta:				-697.792327	
siesta:		on-ion		134.806422	
siesta:		kinion		0.00000	
siesta:	D3 dispe	ersion		0.00000	
siesta:		Total		-214.573506	
siesta:		Fermi		-6.474131	

Final forces

Final stress/pressure

Electric dipole

		Forces (eV/Ar				
		0.152980				
siesta:	2	-2.352006	0.483512	0.76155	3	
		0.483512				
siesta:	4	0.342189	0.342189	-0.97171	9	
siesta:	5	1.373392	1.373392	0.50121	1	
siesta:						
siesta:	Tot	0.000066	0.000066	-0.00108	5	
siesta:	Stress t	censor (stati	c) (eV/Ang*	*3):		
siesta:	0.00	91241 -0.00	00019 -0.00	90128		
siesta:	-0.00	00019 0.00	1241 -0.00	90128		
siesta:	-0.00	90128 -0.00	00128 0.00	90593		
siesta:	Cell vol	Lume =	3375.000000	Ang**3		
siesta:	Pressure	e (static):				
siesta:		Solid	I	Molecule	Units	
siesta:		-0.00001116				
		-0.00102500				
		-1.64224685				
		s*V_orbitals				
		basis*V_ort				
siesta:	Electric	: dipole (a.u	.) = -0.6	911992 -	0.011992	0.008053
100 C 100 C		dipole (Deb				
sicseu.		arbone (Der			010000	01020405

Primary bibliography, and end-of-run time

cite: Please see "ch4.bib" for an exhaustive BiBTeX file. cite: Please clearly indicate Siesta version in published work: cite: This calculation has made use of the following articles cite: which are encouraged to be cited in a published work. Primary SIESTA paper DOI: www.doi.org/10.1088/0953-8984/14/11/302

>> End of run: 21-SEP-2023 9:39:44 Job completed